论文标题

使用PathBench的路径计划算法的系统比较

Systematic Comparison of Path Planning Algorithms using PathBench

论文作者

Hsueh, Hao-Ya, Toma, Alexandru-Iosif, Jaafar, Hussein Ali, Stow, Edward, Murai, Riku, Kelly, Paul H. J., Saeedi, Sajad

论文摘要

路径计划是移动机器人技术的重要组成部分。自主机器人大量使用了古典路径计划算法,例如波前和快速探索的随机树(RRT)。随着机器学习的最新进展,基于学习的路径计划算法的开发一直在迅速增长。需要促进现有算法的开发和基准测试的统一路径计划接口。本文介绍了PathBench,这是一个平台,用于在2D和3D网格世界环境中开发,可视化,培训,测试和基准,基于古典和基于学习的路径计划算法。支持许多现有的路径计划算法;例如a*,dijkstra,Waypoint计划网络,价值迭代网络,门控路径计划网络;整合新算法很容易且明确指定。在本文中,通过比较五个不同的硬件系统和三种不同的地图类型的算法,包括内置的PathBench地图,视频游戏地图和现实世界数据库中的地图,探讨了PathBench的基准能力。路径长度,成功率和计算时间等指标用于评估算法。还对现实世界机器人进行了算法分析,以证明Pathbench对机器人操作系统(ROS)的支持。 PathBench是开源。

Path planning is an essential component of mobile robotics. Classical path planning algorithms, such as wavefront and rapidly-exploring random tree (RRT) are used heavily in autonomous robots. With the recent advances in machine learning, development of learning-based path planning algorithms has been experiencing rapid growth. An unified path planning interface that facilitates the development and benchmarking of existing and new algorithms is needed. This paper presents PathBench, a platform for developing, visualizing, training, testing, and benchmarking of existing and future, classical and learning-based path planning algorithms in 2D and 3D grid world environments. Many existing path planning algorithms are supported; e.g. A*, Dijkstra, waypoint planning networks, value iteration networks, gated path planning networks; and integrating new algorithms is easy and clearly specified. The benchmarking ability of PathBench is explored in this paper by comparing algorithms across five different hardware systems and three different map types, including built-in PathBench maps, video game maps, and maps from real world databases. Metrics, such as path length, success rate, and computational time, were used to evaluate algorithms. Algorithmic analysis was also performed on a real world robot to demonstrate PathBench's support for Robot Operating System (ROS). PathBench is open source.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源