论文标题
关于半导体制造中图像回归问题的无分配预测间隔的构建
On the Construction of Distribution-Free Prediction Intervals for an Image Regression Problem in Semiconductor Manufacturing
论文作者
论文摘要
下一代半导体设备的大批量制造需要测量信号分析的进步。半导体制造业社区中的许多人对采用深度学习有保留。相反,他们更喜欢其他基于模型的方法来解决某些图像回归问题,并且根据2021 IEEE国际设备和系统路线图(IRDS)报告的计量报告报告,半标准化委员会可能会认可这种理念。但是,半导体制造社区确实传达了对最先进的统计分析的需求,以减少测量不确定性。表征回归模型预测性能的可靠性的预测间隔会影响决策,建立对机器学习的信任并将其应用于其他回归模型。但是,我们不知道有效且足够简单的无分配方法,这些方法为重要类别的图像数据提供了有效的覆盖范围,因此我们考虑了无分配的保构预测和整合性的分位数回归框架。图像回归问题是本文与线边缘粗糙度(LER)估计(LER)估计(LER)的估计(LER)的估计(LER),该估计值来自Noisy Scanning Electon电子显微镜图像。 LER会影响半导体设备的性能和可靠性以及制造过程的产量; 2021年IRD强调了LER通过在多个国际焦点小组的报告中提及或讨论的白皮书,这是LER的关键重要性。如何有效地使用归一化的保形预测和分位数回归来进行LER估计,这并不明显。我们应用的建模技术似乎是为了找到图像数据的无分配预测间隔而新颖,并将在2022年半高级半导体制造会议上介绍。
The high-volume manufacturing of the next generation of semiconductor devices requires advances in measurement signal analysis. Many in the semiconductor manufacturing community have reservations about the adoption of deep learning; they instead prefer other model-based approaches for some image regression problems, and according to the 2021 IEEE International Roadmap for Devices and Systems (IRDS) report on Metrology a SEMI standardization committee may endorse this philosophy. The semiconductor manufacturing community does, however, communicate a need for state-of-the-art statistical analyses to reduce measurement uncertainty. Prediction intervals which characterize the reliability of the predictive performance of regression models can impact decisions, build trust in machine learning, and be applied to other regression models. However, we are not aware of effective and sufficiently simple distribution-free approaches that offer valid coverage for important classes of image data, so we consider the distribution-free conformal prediction and conformalized quantile regression framework.The image regression problem that is the focus of this paper pertains to line edge roughness (LER) estimation from noisy scanning electron microscopy images. LER affects semiconductor device performance and reliability as well as the yield of the manufacturing process; the 2021 IRDS emphasizes the crucial importance of LER by devoting a white paper to it in addition to mentioning or discussing it in the reports of multiple international focus teams. It is not immediately apparent how to effectively use normalized conformal prediction and quantile regression for LER estimation. The modeling techniques we apply appear to be novel for finding distribution-free prediction intervals for image data and will be presented at the 2022 SEMI Advanced Semiconductor Manufacturing Conference.