论文标题

找到前进的道路:语言引导的语义图导航器

Find a Way Forward: a Language-Guided Semantic Map Navigator

论文作者

Wang, Zehao, Li, Mingxiao, Wu, Minye, Moens, Marie-Francine, Tuytelaars, Tinne

论文摘要

在本文中,我们介绍了MAP语言导航任务,代理执行自然语言指令,并仅基于给定的3D语义图移至目标位置。为了解决任务,我们设计了指导感的路径建议和歧视模型(IPPD)。我们的方法利用MAP信息提供指令感知路径建议,即,它选择所有潜在的指令一致的候选路径以减少解决方案空间。接下来,为表示沿路径的地图观测值,以实现更好的模态对准,提出了一种针对语义图定制的新型路径特征编码方案。基于注意力的语言驱动的歧视者旨在评估候选路径,并确定最佳路径作为最终结果。与单步贪婪决策方法相比,我们的方法自然可以避免误差积累。与单步仿制学习方法相比,IPPD在导航成功方面的性能增长超过17%,而在有挑战性的看不见的环境中,在路径匹配测量NDTW上的性能增长了0.18。

In this paper, we introduce the map-language navigation task where an agent executes natural language instructions and moves to the target position based only on a given 3D semantic map. To tackle the task, we design the instruction-aware Path Proposal and Discrimination model (iPPD). Our approach leverages map information to provide instruction-aware path proposals, i.e., it selects all potential instruction-aligned candidate paths to reduce the solution space. Next, to represent the map observations along a path for a better modality alignment, a novel Path Feature Encoding scheme tailored for semantic maps is proposed. An attention-based Language Driven Discriminator is designed to evaluate path candidates and determine the best path as the final result. Our method can naturally avoid error accumulation compared with single-step greedy decision methods. Comparing to a single-step imitation learning approach, iPPD has performance gains above 17% on navigation success and 0.18 on path matching measurement nDTW in challenging unseen environments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源