论文标题

关键分支随机步行范围的法律收敛

Convergence in law for the capacity of the range of a critical branching random walk

论文作者

Bai, Tianyi, Hu, Yueyun

论文摘要

令$ r_n $为$ \ mathbb z^d $上的$ n $粒子的关键分支随机步行的范围,这是由关键的加尔顿(Wallton-Watson Tree)访问的一组站点,其随机步行索引,其条件是恰好拥有$ n $ dertices。对于$ d \ in \ {3,4,5 \} $,我们证明$ n^{ - \ frac {d-2} 4} \ mathtt {cap}^{(d)}(d)}(r_n)$,$ r_n $的重新性化能力,以$ r_n $的方式为法律,以支持集成的Super-Super-Super-Super-super-Brownian Ixcours Increstion。证明依赖于对关键分支随机步行与$ \ Mathbb z^d $的独立简单随机步行之间的交叉概率的研究。

Let $R_n$ be the range of a critical branching random walk with $n$ particles on $\mathbb Z^d$, which is the set of sites visited by a random walk indexed by a critical Galton--Watson tree conditioned on having exactly $n$ vertices. For $d\in\{3, 4, 5\}$, we prove that $n^{-\frac{d-2}4} \mathtt{cap}^{(d)}(R_n)$, the renormalized capacity of $R_n$, converges in law to the capacity of the support of the integrated super-Brownian excursion. The proof relies on a study of the intersection probabilities between the critical branching random walk and an independent simple random walk on $\mathbb Z^d$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源