论文标题
关于具有极化的辐射传递方程的独特可溶性
On the unique solvability of radiative transfer equations with polarization
论文作者
论文摘要
我们研究了具有极化和不同折射率的辐射转移方程的良好性。适当的分析包括有界空间域上的非均匀边界值问题,这需要对合适的痕量空间进行分析。此外,我们讨论了基质值解决方案的阳性,墓穴和规范保护。作为辅助结果,我们得出了针对矩阵产品的新痕量不平等。
We investigate the well-posedness of the radiative transfer equation with polarization and varying refractive index. The well-posedness analysis includes non-homogeneous boundary value problems on bounded spatial domains, which requires the analysis of suitable trace spaces. Additionally, we discuss positivity, Hermiticity, and norm-preservation of the matrix-valued solution. As auxiliary results, we derive new trace inequalities for products of matrices.