论文标题

使用预测模型的水和沉积物分析

Water and Sediment Analyse Using Predictive Models

论文作者

Xu, Xiaoting, Lai, Tin, Jahan, Sayka, Farid, Farnaz

论文摘要

在过去的几十年中,海洋污染的普遍性日益增加,促使最近的研究有助于缓解情况。典型的水质评估需要通过劳动密集实验室测试在偏远地区进行水和沉积物的持续监测,以确定污染程度。我们提出了一个自动化框架,使用机器学习,使用收集的水和沉积物样品来推断水质和污染水平。由于样本收集位置的稀疏性,使用水和沉积物进行统计分析的困难通常是一个通常遇到的困难。为此,我们对各种数据插补方法在水和沉积物数据集中的性能进行了广泛的调查,而数据丢失了。从经验上讲,我们表明我们的最佳模型在占缺失数据的57%后的准确性为75%。在实验上,我们表明我们的模型将有助于根据可能不完整的现实数据数据评估水质筛查。

The increasing prevalence of marine pollution during the past few decades motivated recent research to help ease the situation. Typical water quality assessment requires continuous monitoring of water and sediments at remote locations with labour intensive laboratory tests to determine the degree of pollution. We propose an automated framework where we formalise a predictive model using Machine Learning to infer the water quality and level of pollution using collected water and sediments samples. One commonly encountered difficulty performing statistical analysis with water and sediment is the limited amount of data samples and incomplete dataset due to the sparsity of sample collection location. To this end, we performed extensive investigation on various data imputation methods' performance in water and sediment datasets with various data missing rates. Empirically, we show that our best model archives an accuracy of 75% after accounting for 57% of missing data. Experimentally, we show that our model would assist in assessing water quality screening based on possibly incomplete real-world data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源