论文标题

多模式LIDAR数据集,用于基准测试通用定位和映射算法

Multi-Modal Lidar Dataset for Benchmarking General-Purpose Localization and Mapping Algorithms

论文作者

Li, Qingqing, Yu, Xianjia, Queralta, Jorge Peña, Westerlund, Tomi

论文摘要

在过去的十年中,LiDar Technology的发展幅度很大,分辨率更高,准确性更好,并且当今可用的成本设备较低。此外,近年来已经出现了新的扫描方式和新型传感器技术。公共数据集已实现了算法的基准测试,并为尖端技术设定了标准。但是,现有数据集并不代表技术局势,只有减少了可用的动物。这本质上限制了不断发展的景观中通用算法的发展和比较。本文介绍了一个新型的多模式激光雷德数据集,其中具有传感器,展示了不同的扫描方式(旋转和固态),传感技术和激光摄像头。数据集的重点放在低矮的散热器上,在室内和室外环境中都可以使用地面真相数据,具有运动捕获(MOCAP)系统的次毫米精度。为了进行长距离的比较,我们还包括在室内和室外较大空间中记录的数据。该数据集包含来自旋转激光雷达和固态激光痛的点云数据。此外,它还提供了来自LiDAR相机的高分辨率旋转激光雷达,RGB和深度图像的范围图像以及内置IMU的惯性数据。据我们所知,这是LiDAR数据集,该数据集具有可用的地面真相数据的多种传感器和环境。该数据集可广泛用于多个研究领域,例如3D激光雷达同时定位和映射(SLAM),多模式激光射线之间的性能比较,外观识别和环路闭合检测。数据集可在以下网址提供:https://github.com/tiers/tiers-lidars-dataset。

Lidar technology has evolved significantly over the last decade, with higher resolution, better accuracy, and lower cost devices available today. In addition, new scanning modalities and novel sensor technologies have emerged in recent years. Public datasets have enabled benchmarking of algorithms and have set standards for the cutting edge technology. However, existing datasets are not representative of the technological landscape, with only a reduced number of lidars available. This inherently limits the development and comparison of general-purpose algorithms in the evolving landscape. This paper presents a novel multi-modal lidar dataset with sensors showcasing different scanning modalities (spinning and solid-state), sensing technologies, and lidar cameras. The focus of the dataset is on low-drift odometry, with ground truth data available in both indoors and outdoors environment with sub-millimeter accuracy from a motion capture (MOCAP) system. For comparison in longer distances, we also include data recorded in larger spaces indoors and outdoors. The dataset contains point cloud data from spinning lidars and solid-state lidars. Also, it provides range images from high resolution spinning lidars, RGB and depth images from a lidar camera, and inertial data from built-in IMUs. This is, to the best of our knowledge, the lidar dataset with the most variety of sensors and environments where ground truth data is available. This dataset can be widely used in multiple research areas, such as 3D LiDAR simultaneous localization and mapping (SLAM), performance comparison between multi-modal lidars, appearance recognition and loop closure detection. The datasets are available at: https://github.com/TIERS/tiers-lidars-dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源