论文标题

在线适应性的错误本地化用于快速发展的软件

Online Adaptable Bug Localization for Rapidly Evolving Software

论文作者

Ciborowska, Agnieszka, Decker, Michael J., Damevski, Kostadin

论文摘要

错误本地化旨在通过推荐与特定错误报告相关的程序元素来减少调试时间。迄今为止,研究人员主要通过应用不同的信息检索技术来利用给定的错误报告和源代码之间的相似性来解决此问题。但是,随着现代软件开发趋向于提高软件变化的速度并连续向用户交付,因此当前一代的错误本地化技术无法快速适应该软件的最新版本。在本文中,我们提出了一种用于在线错误本地化的技术,该技术可以快速更新的错误本地化模型。更具体地说,我们根据在线主题模型的集合提出了一种流媒体错误本地化技术,该技术能够适应特定的(带有明确的代码提及)和更多抽象的错误报告。通过使用更改集(DIFF)作为输入,而不是源代码的快照,该模型自然地将缺陷预测和共同变换信息集成到其预测中。最初的结果表明,所提出的方法改善了56个评估项目中42个的错误本地化性能,平均地图提高了5.9%。

Bug localization aims to reduce debugging time by recommending program elements that are relevant for a specific bug report. To date, researchers have primarily addressed this problem by applying different information retrieval techniques that leverage similarities between a given bug report and source code. However, with modern software development trending towards increased speed of software change and continuous delivery to the user, the current generation of bug localization techniques, which cannot quickly adapt to the latest version of the software, is becoming inadequate. In this paper, we propose a technique for online bug localization, which enables rapidly updatable bug localization models. More specifically, we propose a streaming bug localization technique, based on an ensemble of online topic models, that is able to adapt to both specific (with explicit code mentions) and more abstract bug reports. By using changesets (diffs) as the input instead of a snapshot of the source code, the model naturally integrates defect prediction and co-change information into its prediction. Initial results indicate that the proposed approach improves bug localization performance for 42 out of 56 evaluation projects, with an average MAP improvement of 5.9%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源