论文标题

$ f(t)$重力

Black-Bounce in $f(T)$ Gravity

论文作者

Junior, Ednaldo L. B., Rodrigues, Manuel E.

论文摘要

我们研究了在$ f(t)$重力中以四个维度制定的黑色弹跳空间的新解决方案。首先,我们介绍了对角四分线的情况,其中一个在运动方程中产生的约束,该方程分为无效的扭转,恒定扭转和远程平行的情况。零能状况(NEC)仍然总是违反的,这意味着其他能源条件遭到侵犯。在所有时空中,溶液都是规则的,无效扭转的溶液在事件范围内外的能量条件之间表现出不连续性。其次,我们介绍了非二元四四分之一的情况。该情况分为Simpson-Visser类型模型和二次模型。 NEC继续受到侵犯,这意味着违反了其他能源条件。解决方案在所有空间上都是常规的。一个有趣的结果是,由于与公制相关的区域不同于$4πr^2 $,因此违反了通常的$ f(t)$在通常的$ f(t)$中建立的无关定理,因此对于该计量的组件而言,新的可能性$ g_ {00} = -g^{11} $。

We study new solutions of black bounce spacetimes formulated in $f(T)$ gravity in four dimensions. First, we present the case of a diagonal tetrad, where a constraint arises in the equations of motion, which is divided into the cases of null torsion, constant torsion, and Teleparallel. The Null Energy Condition (NEC) is still always violated, which implies that the other energy conditions are violated. The solutions are regular in all spacetime and the solution with null torsion exhibits discontinuity between the energy conditions outside and inside the event horizon. Second, we present the case of non-diagonal tetrads. This case is divided into a Simpson-Visser type model and a quadratic model. The NEC continues to be violated, implying a violation of the other energy conditions. The solutions are regular in all spacetimes. An interesting result is that due to the possibility that the area associated with the metric is different from $4πr^2$, the no-go theorem established in the usual $f(T)$ is violated, appearing the new possibility $g_{00}=-g^{11}$, for the components of the metric.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源