论文标题
Bianchi I型宇宙的热力学方面以$ f \ left(q \右)的二次形式形式
Thermodynamical aspects of Bianchi type-I Universe in quadratic form of $f\left( Q\right) $ gravity and observational constraints
论文作者
论文摘要
在本文中,我们讨论了对称触发性重力框架中的Bianchi I型宇宙学模型,例如$ f(q)$重力,其中非金属项$ q $负责引力交互。我们考虑$ f \ left(q \右)$函数的一种特殊形式,可以将其施放为$ f \ left(q \ right)=λq^{n} $,其中$λ$和$ n $都是动态模型参数。这种选择可以看作是杂种量表因子,它导致宇宙时间和红移之间的关系为$%t = \ left(\ frac {\ frac {αt_{0}} {β} {β} {β} \ right) } {α}} \ right] $,它描述了宇宙的$%λ$ CDM模型,扩展从减速到加速阶段。然后估算模型参数的最佳值,即$α$和$β$。我们利用来自哈勃数据集的57点,从IA型数据集的超新星和BAO数据集的6分。我们将马尔可夫链蒙特卡洛(MCMC)技术与贝叶斯分析和可能性函数结合使用。此外,我们通过研究热力学量,能量条件以及某些物理变量(例如EOS)和混蛋参数来研究模型的有效性。接下来,根据当前的观察数据和趋势讨论我们的结果。
In this paper, we discuss the Bianchi type-I cosmological model in the framework of symmetric teleparallel gravity say $f(Q)$ gravity in which the non-metricity term $Q$ is responsible for the gravitational interaction. We consider a special form of the $f\left( Q\right) $ function which can be cast as $f\left( Q\right) =λQ^{n}$, where $λ$ and $n$ both are the dynamical model parameters. Such a choice can be viewed as a hybrid scale factor that leads to a relation between cosmic time and redshift as $% t=\left( \frac{αt_{0}}{β}\right) W\left[ \frac{β}{α}e^{% \frac{β-\ln \left( 1+z\right) }{α}}\right] $ which describes a $% Λ$CDM model of the Universe with the expansion evolving from decelerating to an acceleration phase. The best values for the model parameters i.e. $α$ and $β$ that would accord with the most current observational datasets are then estimated. We make use of 57 points from the Hubble dataset, 1048 points from the supernovae of type Ia dataset and 6 points from the BAO dataset. We use the Markov Chain Monte Carlo (MCMC) technique in conjunction with Bayesian analysis and the likelihood function. Further, we study the validity of our model with the investigation of the thermodynamical quantities, energy conditions along with some physical variables such as the EoS, and jerk parameters. Next, our results are discussed in light of current observational data and trends.