论文标题

使用喷气背包在火星上的空中直升机交付

Mid-Air Helicopter Delivery at Mars Using a Jetpack

论文作者

Delaune, Jeff, Izraelevitz, Jacob, Sirlin, Samuel, Sternberg, David, Giersch, Louis, Tosi, L. Phillipe, Skliyanskiy, Evgeniy, Young, Larry, Mischna, Michael, Withrow-Maser, Shannah, Mueller, Juergen, Bowman, Joshua, Wallace, Mark S, Grip, Havard F., Matthies, Larry, Johnson, Wayne, Keennon, Matthew, Pipenberg, Benjamin, Patel, Harsh, Lim, Christopher, Schutte, Aaron, Veismann, Marcel, Cummings, Haley, Conley, Sarah, Bapst, Jonathan, Tzanetos, Theodore, Brockers, Roland, Jain, Abhinandan, Bayard, David, Chmielewski, Art, Toupet, Olivier, Burdick, Joel, Gharib, Morteza, J., Balaram

论文摘要

空中直升机的交付(MAHD)是一个新的入境,下降和着陆(EDL)建筑,可实现MARS Science的原位移动性,其成本低于以前的任务。它使用喷气背包与背壳分离后降低了火星科学直升机(MSH),并达到适合在空气中空气中直升机起飞的空气动力状况。对于给定的Aeroshell尺寸,只有MAHD的无登录式进近在Aeroshell中留出足够的空间,以适应MSH最大的转子选项。这大大提高了飞行性能,特别是允许+150 \%增加科学有效载荷质量。与遗产EDL方法相比,更简单的MAHD架构也可能会降低成本,并使火星上更加危险和更高的高海拔地形。本文介绍了MAHD系统架构和操作的设计。我们提出了一种机械配置,可在2.65米火星遗产Aeroshell中均适合MSH和JETPACK,以及一个完全利用可用的直升机航空电子技术的喷气背包控制体。我们讨论由喷气机,转子和侧风之间相互作用引起的流动动力学的初步数值模型。我们定义了一种能够处理风并修剪转子以为安全起飞做准备的力量传感架构。最后,我们分析了动态环境和闭环控制模拟结果,以证明MAHD的初步可行性。

Mid-Air Helicopter Delivery (MAHD) is a new Entry, Descent and Landing (EDL) architecture to enable in situ mobility for Mars science at lower cost than previous missions. It uses a jetpack to slow down a Mars Science Helicopter (MSH) after separation from the backshell, and reach aerodynamic conditions suitable for helicopter take-off in mid air. For given aeroshell dimensions, only MAHD's lander-free approach leaves enough room in the aeroshell to accommodate the largest rotor option for MSH. This drastically improves flight performance, notably allowing +150\% increased science payload mass. Compared to heritage EDL approaches, the simpler MAHD architecture is also likely to reduce cost, and enables access to more hazardous and higher-elevation terrains on Mars. This paper introduces a design for the MAHD system architecture and operations. We present a mechanical configuration that fits both MSH and the jetpack within the 2.65-m Mars heritage aeroshell, and a jetpack control architecture which fully leverages the available helicopter avionics. We discuss preliminary numerical models of the flow dynamics resulting from the interaction between the jets, the rotors and the side winds. We define a force-torque sensing architecture capable of handling the wind and trimming the rotors to prepare for safe take-off. Finally, we analyze the dynamic environment and closed-loop control simulation results to demonstrate the preliminary feasibility of MAHD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源