论文标题
认知诊断具有明确的学生矢量估计和无监督的问题矩阵学习
Cognitive Diagnosis with Explicit Student Vector Estimation and Unsupervised Question Matrix Learning
论文作者
论文摘要
在许多教育应用中,认知诊断是必不可少的任务。文献中已经设计了许多解决方案。确定性输入嘈杂的“和”门(DINA)模型是一个经典的认知诊断模型,可以提供可解释的认知参数,例如学生向量。但是,DINA的概率部分的假设太强了,因为它假定问题的滑倒和猜测是与学生无关的。此外,在认知诊断域中记录问题的技能分布通常需要域专家给出的精确标签。因此,我们提出了一种明确的学生矢量估计方法(ESVE)方法,以通过局部自一致的测试来估算DINA的学生向量,该测试不依赖于DINA的概率部分的任何假设。然后,根据估计的学生向量,DINA的概率部分可以修改为学生依赖的模型,即滑移和猜测与学生向量有关。此外,我们提出了一种无监督的方法,称为启发式双向校准算法(HBCA)自动标记Q-Matrix,该方法将问题的难度关系和答案结果连接起来,并使用ESVE-DINA的容忍度进行校准。两个现实世界数据集的实验结果表明,ESVE-DINA在精度上的表现优于DINA模型,并且HBCA自动标记的Q-Matrix可以实现与使用同一模型结构时手动标记的Q-Matrix获得的性能。
Cognitive diagnosis is an essential task in many educational applications. Many solutions have been designed in the literature. The deterministic input, noisy "and" gate (DINA) model is a classical cognitive diagnosis model and can provide interpretable cognitive parameters, e.g., student vectors. However, the assumption of the probabilistic part of DINA is too strong, because it assumes that the slip and guess rates of questions are student-independent. Besides, the question matrix (i.e., Q-matrix) recording the skill distribution of the questions in the cognitive diagnosis domain often requires precise labels given by domain experts. Thus, we propose an explicit student vector estimation (ESVE) method to estimate the student vectors of DINA with a local self-consistent test, which does not rely on any assumptions for the probabilistic part of DINA. Then, based on the estimated student vectors, the probabilistic part of DINA can be modified to a student dependent model that the slip and guess rates are related to student vectors. Furthermore, we propose an unsupervised method called heuristic bidirectional calibration algorithm (HBCA) to label the Q-matrix automatically, which connects the question difficulty relation and the answer results for initialization and uses the fault tolerance of ESVE-DINA for calibration. The experimental results on two real-world datasets show that ESVE-DINA outperforms the DINA model on accuracy and that the Q-matrix labeled automatically by HBCA can achieve performance comparable to that obtained with the manually labeled Q-matrix when using the same model structure.