论文标题

(3+1) - 维kadomtsev-petviaShvili-Boussinesq模型的局部非线性波

Localized Nonlinear Waves on Spatio-Temporally Controllable Backgrounds for a (3+1)-Dimensional Kadomtsev-Petviashvili-Boussinesq Model in Water Waves

论文作者

Singh, Sudhir, Sakkaravarthi, K., Murugesan, K.

论文摘要

在可变背景上的非线性波的物理学和相关的数学分析仍然是研究的挑战性方面。在这项工作中,我们通过使用简单的数学工具Auto-Bäcklund变换来考虑第(3+1)维非线性模型,该模型描述了{Water Wave}的动力学并首次在空间可控背景上构造非线性波解决方案。主要是,我们揭示了身体上有趣的特征,以控制和操纵非线性波的动力学。我们分别构建了单个扭结和流氓波,将指数函数和二维程度的一般多项式作为初始种子溶液。我们通过结合雅各比椭圆函数,选择任意周期性,局部和组合的波浪背景,并通过清晰的分析和图形演示调查这两个非线性波的调制。这项工作中得出的解决方案为我们提供了足够的自由,可以在可变背景上产生异国情调的非线性相干结构,并为探索通过不均匀介质传播的其他各种非线性波的动力学打开一个有趣的方向。

Physics of nonlinear waves on variable backgrounds and the relevant mathematical analysis continues to be the challenging aspect of the study. In this work, we consider a (3+1)-dimensional nonlinear model describing the dynamics of {water waves} and construct nonlinear wave solutions on spatio-temporally controllable backgrounds for the first time by using a simple mathematical tool auto-Bäcklund transformation. Mainly, we unravel physically interesting features to control and manipulate the dynamics of nonlinear waves through the background. Adapting an exponential function and general polynomial of degree two as initial seed solutions, we construct single kink-soliton and rogue wave, respectively. We choose arbitrary periodic, localized and combined wave backgrounds by incorporating Jacobi elliptic functions and investigate the modulation of these two nonlinear waves with a clear analysis and graphical demonstrations. The solutions derived in this work give us sufficient freedom to generate exotic nonlinear coherent structures on variable backgrounds and open up an interesting direction to explore the dynamics of various other nonlinear waves propagating through inhomogeneous media.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源