论文标题
尽管有二次障碍,但双线性schrödinger方程的小型局部可控性,得益于立方术语
Small-time local controllability of the bilinear Schrödinger equation, despite a quadratic obstruction, thanks to a cubic term
论文作者
论文摘要
我们在有界的间隔内考虑一个1D线性schr {Ö} dinger方程,并具有差异的边界条件和双线性控制。当线性化系统无法控制时,我们研究其围绕基态的可控性。更确切地说,我们研究扩展的非线性项在多大程度上可以恢复在第一阶丢失的指示。在先前的工作中,对于任何积极的整数$ n $,已经为二次术语诱导非线性动力学的假设提出了假设,并由$ h^{ - n} $控制的非线性动力学量化。这种漂移是在常规空间中对控件的小假设下对小型局部可控性(STLC)的障碍。在本文中,我们证明,对于在较小的规则空间中的控制较小,尽管有二次漂移,但立方术语仍可以恢复在线性级别上丢失的可控性。该证明的灵感来自Sussman的方法,以证明ODES的STLC的$ \ Mathcal {s}(θ)$条件的充分性。但是,它使用了另一种依赖于切线向量的新概念的全球策略,更好地适应了PDE的无限维度。鉴于一个目标,我们首先通过使用控制术语主导二次术语的控制变化来实现沿丢失方向的预期运动。然后,我们通过在投影结果中使用STLC准确地纠正其他组件,并同时估计对照的弱规范。这些估计值确保了沿丢失方向的新误差可以忽略不计,我们以Brouwer固定点定理得出结论。
We consider a 1D linear Schr{ö}dinger equation, on a bounded interval, with Dirichlet boundary conditions and bilinear control. We study its controllability around the ground state when the linearized system is not controllable. More precisely, we study to what extent the nonlinear terms of the expansion can recover the directions lost at the first order.In previous works, for any positive integer $n$, assumptions have been formulated under which the quadratic term induces a drift in the nonlinear dynamics, quantified by the $H^{-n}$ norm of the control. This drift is an obstruction to the small-time local controllability (STLC) under a smallness assumption on the controls in regular spaces. In this paper, we prove that for controls small in less regular spaces, the cubic term can recover the controllability lost at the linear level, despite the quadratic drift. The proof is inspired by Sussman's method to prove the sufficiency of the $\mathcal{S}(θ)$ condition for STLC of ODEs. However, it uses a different global strategy relying on a new concept of tangent vector, better adapted to the infinite-dimensional setting of PDEs. Given a target, we first realize the expected motion along the lost direction by using control variations for which the cubic term dominates the quadratic one. Then, we correct the other components exactly, by using a STLC in projection result, with simultaneous estimates of weak norms of the control. These estimates ensure that the new error along the lost direction is negligible, and we conclude with the Brouwer fixed point theorem.