论文标题
Schwarzschild黑洞的准模式在投影不变的Chern-Simons修饰的重力
Quasinormal modes of Schwarzschild black holes in projective invariant Chern-Simons modified gravity
论文作者
论文摘要
我们将Chern-Simons修饰的重力概括为公制的植入案例,并通过补充二氧化碳密度的同构曲率术语来施加投影性不变性,这些曲率不会破坏拓扑性。然后,通过将Chern-Simons术语的耦合促进(伪) - 刻画场的耦合来打破后者。扭转和非赞誉的溶液是扰动的,表明它们可以从背景字段迭代获得。这使我们能够以自洽的方式描述度量和标量场扰动的动力学,并且我们将形式主义应用于Schwarzschild黑洞背景中的准模式的研究。与该理论的度量公式不同,我们表明,即使在动作中没有动力学术语的情况下,标量场也具有动力学。最后,使用数值方法,我们计算了准频率,并表征了标量和度量扰动的后期功率定律尾巴,将结果与纯度度量方法的结果进行了比较。
We generalize the Chern-Simons modified gravity to the metric-affine case and impose projective invariance by supplementing the Pontryagin density with homothetic curvature terms which do not spoil topologicity. The latter is then broken by promoting the coupling of the Chern-Simons term to a (pseudo)-scalar field. The solutions for torsion and nonmetricity are derived perturbatively, showing that they can be iteratively obtained from the background fields. This allows us to describe the dynamics for the metric and the scalar field perturbations in a self-consistent way, and we apply the formalism to the study of quasinormal modes in a Schwarzschild black hole background. Unlike in the metric formulation of this theory, we show that the scalar field is endowed with dynamics even in the absence of its kinetic term in the action. Finally, using numerical methods we compute the quasinormal frequencies and characterize the late-time power law tails for scalar and metric perturbations, comparing the results with the outcomes of the purely metric approach.