论文标题

在Leavitt Path代数上,关于Lie Bracket代数的有才华的单体观点

A Talented Monoid View on Lie Bracket Algebras over Leavitt Path Algebras

论文作者

Bock, Wolfgang, Sebandal, Alfilgen, Viliela, Jocelyn

论文摘要

在本文中,我们将属性研究为基于基础图的才华横溢的leavitt Path代数产生的谎言括号代数的简单性,可溶性和niltermentions。我们表明,Leavitt路径代数的分级简单性和简单性可以通过Lie Bracket代数连接。此外,我们将gelfand-kirillov尺寸用于Leavitt Path代数来分类niltotencion和solvisition。

In this article, we study properties as simplicity, solvability and nilpotency for Lie bracket algebras arising from Leavitt path algebras, based on the talented monoid of the underlying graph. We show that graded simplicity and simplicity of the Leavitt path algebra can be connected via the Lie bracket algebra. Moreover, we use the Gelfand-Kirillov dimension for the Leavitt path algebra for a classification of nilpotency and solvability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源