论文标题
关于时间序列回归的强大推断
On Robust Inference in Time Series Regression
论文作者
论文摘要
最小二乘回归具有异方差性一致的标准误差(“ OLS-HC回归”)在横截面环境中非常有用。但是,当将HC技术传输到时间序列环境中时,必须面对几个主要的困难,这些困难必须面临。首先,在合理的时间序列环境中,OLS参数估计值可能是不一致的,因此OLS-HAC推理即使渐近地失败。其次,大多数经济时间序列具有自相关,这使OLS参数估计效率低下。第三,自相关类似地,基于OLS参数估计值效率低下的条件预测。最后,流行的HAC协方差矩阵估计量的结构不适合捕获经济时间序列中通常存在的自回归自相关,该自相关相关的结构通常会产生大尺寸扭曲和基于HAC的假设测试中的功率降低,但除了最大的样本外。我们表明,通过使用简单易于实现的动态回归程序,我们将所有四个问题都在很大程度上避免了,我们称之为Durbin。我们通过详细的模拟涵盖了一系列实际问题,证明了德宾的优势。
Least squares regression with heteroskedasticity consistent standard errors ("OLS-HC regression") has proved very useful in cross section environments. However, several major difficulties, which are generally overlooked, must be confronted when transferring the HC technology to time series environments via heteroskedasticity and autocorrelation consistent standard errors ("OLS-HAC regression"). First, in plausible time-series environments, OLS parameter estimates can be inconsistent, so that OLS-HAC inference fails even asymptotically. Second, most economic time series have autocorrelation, which renders OLS parameter estimates inefficient. Third, autocorrelation similarly renders conditional predictions based on OLS parameter estimates inefficient. Finally, the structure of popular HAC covariance matrix estimators is ill-suited for capturing the autoregressive autocorrelation typically present in economic time series, which produces large size distortions and reduced power in HAC-based hypothesis testing, in all but the largest samples. We show that all four problems are largely avoided by the use of a simple and easily-implemented dynamic regression procedure, which we call DURBIN. We demonstrate the advantages of DURBIN with detailed simulations covering a range of practical issues.