论文标题
部分可观测时空混沌系统的无模型预测
Fermionic and Bosonic Greybody Factors as well as Quasinormal Modes for Charged Taub NUT Black Holes
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The paper studies the spinorial wave equations, namely the Dirac and the Klein Gordon equations, as well as the greybody radiations and quasinormal modes (QNMs) of the charged Taub NUT black hole (CTNBH). To obtain fermionic greybody factors (GFs) and QNMs, we study the charged fermions by employing the Dirac equation. To this end, we use a null tetrad in the Newman-Penrose formalism. Then, we separate the Dirac equation into radial and angular sets. Using the obtained radial equations, we convert them into the typical one dimensional Schrödinger like wave equations with the aid of tortoise coordinate and derive the effective potentials. For bosonic GFs and QNMs, we study the Klein Gordon equation in the CTNBH geometry and obtain the radial equation. We then derive the effective potential and investigate the effect of NUT parameter on it. We show that while the fermionic QNMs and GFs individually increase with the increasing NUT parameter, the increase of bosonic GFs with increasing NUT parameter is overwhelmingly greater than that of the bosonic QNMs.