论文标题

分配系统基于课程的加固学习关键负载恢复

Curriculum-based Reinforcement Learning for Distribution System Critical Load Restoration

论文作者

Zhang, Xiangyu, Eseye, Abinet Tesfaye, Knueven, Bernard, Liu, Weijia, Reynolds, Matthew, Jones, Wesley

论文摘要

本文重点介绍了大量停电后分配系统中的关键负载恢复问题。为了提供快速的在线响应和最佳的顺序决策支持,提出了基于加强学习(RL)的方法来优化修复。由于大型政策搜索空间的复杂性,可再生的不确定性和在复杂的网格控制问题中的非线性,因此直接应用RL算法来培训令人满意的政策需要广泛的调整才能成功。为了应对这一挑战,本文利用课程学习(CL)技术来设计培训课程,涉及简单的垫脚石问题,该课程指导RL代理商学习以渐进和更有效的方式学习原始的硬问题。我们证明,与直接学习相比,CL促进控制器培训以取得更好的性能。为了研究用于决策的可再生预测的现实情况,通常不完美地将训练有素的RL控制器与使用具有不同误差级别的可再生预测级的两个模型预测控制器(MPC)进行比较,并观察到这些控制器如何对冲不确定的不确定。结果表明,与基线MPC相比,RL控制器不太容易受到预测错误,并且可以提供更可靠的恢复过程。

This paper focuses on the critical load restoration problem in distribution systems following major outages. To provide fast online response and optimal sequential decision-making support, a reinforcement learning (RL) based approach is proposed to optimize the restoration. Due to the complexities stemming from the large policy search space, renewable uncertainty, and nonlinearity in a complex grid control problem, directly applying RL algorithms to train a satisfactory policy requires extensive tuning to be successful. To address this challenge, this paper leverages the curriculum learning (CL) technique to design a training curriculum involving a simpler steppingstone problem that guides the RL agent to learn to solve the original hard problem in a progressive and more effective manner. We demonstrate that compared with direct learning, CL facilitates controller training to achieve better performance. To study realistic scenarios where renewable forecasts used for decision-making are in general imperfect, the experiments compare the trained RL controllers against two model predictive controllers (MPCs) using renewable forecasts with different error levels and observe how these controllers can hedge against the uncertainty. Results show that RL controllers are less susceptible to forecast errors than the baseline MPCs and can provide a more reliable restoration process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源