论文标题

通过步态了解人的身份

Understanding Person Identification through Gait

论文作者

Hanisch, Simon, Muschter, Evelyn, Hatzipanayioti, Admantini, Li, Shu-Chen, Strufe, Thorsten

论文摘要

步态识别是从双方运动(例如步行或跑步)中识别人类的过程。因此,步态数据是隐私敏感信息,应在可能的情况下匿名化。随着高质量步态记录技术的兴起,例如深度摄像机或运动捕获西服,越来越多的详细步态数据被捕获和处理。 Metaverse的引入和崛起是一个潜在流行的应用程序场景的一个示例,其中用户步态被转移到数字化身上。作为开发高质量步态数据有效匿名技术的第一步,我们研究了运动数据的不同方面,以量化其对步态识别的贡献。我们首先从有关人步态感知的文献中提取特征类别,然后为每个类别设计实验,以评估它们所包含的信息有助于识别成功。我们在用户研究中通过自然等级评估了步态扰动的实用性。我们的结果表明,步态匿名化将具有挑战性,因为数据是高度冗余和相互依存的。

Gait recognition is the process of identifying humans from their bipedal locomotion such as walking or running. As such, gait data is privacy sensitive information and should be anonymized where possible. With the rise of higher quality gait recording techniques, such as depth cameras or motion capture suits, an increasing amount of detailed gait data is captured and processed. The introduction and rise of the Metaverse is an example of a potentially popular application scenario in which the gait of users is transferred onto digital avatars. As a first step towards developing effective anonymization techniques for high-quality gait data, we study different aspects of movement data to quantify their contribution to gait recognition. We first extract categories of features from the literature on human gait perception and then design experiments for each category to assess how much the information they contain contributes to recognition success. We evaluated the utility of gait perturbation by means of naturalness ratings in a user study. Our results show that gait anonymization will be challenging, as the data is highly redundant and inter-dependent.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源