论文标题
使用平行可变密度近似消息传递(P-VDAMP)调谐无多线圈压缩感测MRI(P-VDAMP)
Tuning-free multi-coil compressed sensing MRI with Parallel Variable Density Approximate Message Passing (P-VDAMP)
论文作者
论文摘要
磁共振成像(MRI)具有出色的软组织对比度,但由于固有的缓慢数据采集过程而阻碍了。压缩传感是从不连贯采样数据中重建稀疏信号的,已广泛应用于加速MRI采集。压缩传感MRI需要调整一个或多个模型参数,通常是手工完成的,从而提供了亚最佳调整。为了解决这个问题,我们基于作者对单线圈可变密度近似消息传递(VDAMP)算法的先前工作,将框架扩展到多个接收器线圈以提出并行VDAMP(p-vdamp)算法。对于Bernoulli随机可变密度采样,P-VDAMP遵守“状态进化”,其中中间的每卷动图像估计是根据由零均值的高斯矢量损坏的地面真相分布的,具有大致已知的协方差。据我们所知,p-vDamp是使用准确跟踪参数的多圈MRI数据数据的第一种算法。我们利用状态演变可以自动调整稀疏参数,并与Stein的无偏风险估计(当然)自动调整。 P-VDAMP在大脑,膝盖和血管造影数据集上进行了评估,并将其与快速迭代收缩率鉴定算法(FISTA)的四种变体进行了比较,其中包括文献中的两个无调变体。发现该方法具有类似的重建质量和时间,可以通过最佳调整的稀疏加权与Fista进行收敛,并在无竞争的无调方法上提供了实质性的鲁棒性和重建质量的改进。
Magnetic Resonance Imaging (MRI) has excellent soft tissue contrast but is hindered by an inherently slow data acquisition process. Compressed sensing, which reconstructs sparse signals from incoherently sampled data, has been widely applied to accelerate MRI acquisitions. Compressed sensing MRI requires one or more model parameters to be tuned, which is usually done by hand, giving sub-optimal tuning in general. To address this issue, we build on previous work by the authors on the single-coil Variable Density Approximate Message Passing (VDAMP) algorithm, extending the framework to multiple receiver coils to propose the Parallel VDAMP (P-VDAMP) algorithm. For Bernoulli random variable density sampling, P-VDAMP obeys a "state evolution", where the intermediate per-iteration image estimate is distributed according to the ground truth corrupted by a zero-mean Gaussian vector with approximately known covariance. To our knowledge, P-VDAMP is the first algorithm for multi-coil MRI data that obeys a state evolution with accurately tracked parameters. We leverage state evolution to automatically tune sparse parameters on-the-fly with Stein's Unbiased Risk Estimate (SURE). P-VDAMP is evaluated on brain, knee and angiogram datasets and compared with four variants of the Fast Iterative Shrinkage-Thresholding algorithm (FISTA), including two tuning-free variants from the literature. The proposed method is found to have a similar reconstruction quality and time to convergence as FISTA with an optimally tuned sparse weighting and offers substantial robustness and reconstruction quality improvements over competing tuning-free methods.