论文标题

lie superalgebras $ \ mathfrak {sl}(m | n)$或$ \ mathfrak {osp}(m | 2n)$

Centres of centralizers of nilpotent elements in Lie superalgebras $\mathfrak{sl}(m|n)$ or $\mathfrak{osp}(m|2n)$

论文作者

Han, Leyu

论文摘要

令$ \ bar {g} $为简单的代数超组$ \ mathrm {sl}(m | n)$或$ \ mathrm {osp}(m | 2n)$ over $ \ mathbb {c} $。令$ \ Mathfrak {g} = \ Mathrm {lie}(\ bar {g})= \ Mathfrak {g} _ {\ bar {0}} \ oplus \ mathfrak {g} $ \ mathbb {c} $被认为是偶数集中的超级巨头。假设$ e \ in \ mathfrak {g} _ {\ bar {0}} $是nilpotent。我们描述了$ \ mathfrak {g} $ in $ e $的centralizer $ \ mathfrak {g}^{e} $及其中心$ \ mathfrak {z}(\ mathfrak {g}^e})$。特别是,我们给出了$ \ mathfrak {g}^{e} $,$ \ mathfrak {z}(\ Mathfrak {\ mathfrak {g}^{e})$和$ \ left(\ mathfrak {z}(\ mathfrak {g}^e} {e} {我们还针对$ e $确定了标记的dynkin图$ \ vardelta $,然后描述$ \ left(\ mathfrak {z}(\ mathfrak {\ mathfrak {g}^{e} {e})\ right)\ right)

Let $\bar{G}$ be the simple algebraic supergroup $\mathrm{SL}(m|n)$ or $\mathrm{OSp}(m|2n)$ over $\mathbb{C}$. Let $\mathfrak{g}=\mathrm{Lie}(\bar{G})=\mathfrak{g}_{\bar{0}}\oplus\mathfrak{g}_{\bar{1}}$ and let $G=\bar{G}(\mathbb{C})$ where $\mathbb{C}$ is considered as a superalgebra concentrated in even degree. Suppose $e\in\mathfrak{g}_{\bar{0}}$ is nilpotent. We describe the centralizer $\mathfrak{g}^{e}$ of $e$ in $\mathfrak{g}$ and its centre $\mathfrak{z}(\mathfrak{g}^{e})$. In particular, we give bases for $\mathfrak{g}^{e}$, $\mathfrak{z}(\mathfrak{g}^{e})$ and $\left(\mathfrak{z}(\mathfrak{g}^{e})\right)^{G^{e}}$. We also determine the labelled Dynkin diagram $\varDelta$ with respect to $e$ and subsequently describe the relation between $\left(\mathfrak{z}(\mathfrak{g}^{e})\right)^{G^{e}}$ and $\varDelta$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源