论文标题
带反馈的梯度上升脉冲工程
Gradient Ascent Pulse Engineering with Feedback
论文作者
论文摘要
从传感到量子计算,量子控制和反馈的有效方法对于量子技术至关重要。开放环控制任务已通过优化技术成功解决,包括依赖于量子动力学的可区分模型等方法,包括梯度脉搏工程(葡萄)。对于反馈任务,此类方法不是直接适用的,因为目的是发现以测量结果为条件的策略。在这项工作中,我们介绍了反馈葡萄,从无模型的增强学习中借用了一些概念,以结合对强随机(离散或连续)测量的响应,同时仍通过量子动力学进行直接梯度上升。我们说明了基于腔QED设置的各种场景的各种场景的功能。我们的方法在存在噪声的情况下产生可解释的反馈策略,以实现状态准备和稳定。我们的方法可以用于在各种反馈任务中发现策略,从校准多Qubit设备到线性磁量子量子计算策略,具有自适应测量的量子增强感测和量子误差校正。
Efficient approaches to quantum control and feedback are essential for quantum technologies, from sensing to quantum computation. Open-loop control tasks have been successfully solved using optimization techniques, including methods like gradient-ascent pulse engineering (GRAPE), relying on a differentiable model of the quantum dynamics. For feedback tasks, such methods are not directly applicable, since the aim is to discover strategies conditioned on measurement outcomes. In this work, we introduce feedback-GRAPE, which borrows some concepts from model-free reinforcement learning to incorporate the response to strong stochastic (discrete or continuous) measurements, while still performing direct gradient ascent through the quantum dynamics. We illustrate its power considering various scenarios based on cavity QED setups. Our method yields interpretable feedback strategies for state preparation and stabilization in the presence of noise. Our approach could be employed for discovering strategies in a wide range of feedback tasks, from calibration of multi-qubit devices to linear-optics quantum computation strategies, quantum-enhanced sensing with adaptive measurements, and quantum error correction.