论文标题
魔术角半学的低能激发光谱
The low energy excitation spectrum of magic-angle semimetals
论文作者
论文摘要
从理论上讲,我们研究了在存在不一致的潜力的情况下,二维Dirac半学的激发光谱。此类模型已被证明在单个粒子波峰中具有魔角临界点,这是由于消失的零片锥速度而导致的平面波本征态的动量空间定位和平坦带的信号。使用内核多项式方法,我们计算单个粒子绿色的函数,以提取单个颗粒激发能,阻尼速率和准粒子残基的性质。结果,我们能够清楚地证明,由于准二氧化碳诱导的布里渊区的折叠折叠而导致光谱重量的重新分布,从而创建了具有有效的迷你布里鲁因区的小班,这与新兴的超级晶格相对应。通过计算阻尼速率,我们表明,魔法角过渡的速度和有限状态密度消失了,与自我能量中虚构的一部分的发展以及抑制了像时尚一样在权力定律中消失的准粒子残留物的抑制。讨论了使用动量射射频光谱与超速原子观察这些作用。
We theoretically study the excitation spectrum of a two-dimensional Dirac semimetal in the presence of an incommensurate potential. Such models have been shown to possess magic-angle critical points in the single particle wavefunctions, signalled by a momentum space delocalization of plane wave eigenstates and flat bands due to a vanishing Dirac cone velocity. Using the kernel polynomial method, we compute the single particle Green's function to extract the nature of the single particle excitation energy, damping rate, and quasiparticle residue. As a result, we are able to clearly demonstrate the redistribution of spectral weight due to quasiperiodicity-induced downfolding of the Brillouin zone creating minibands with effective mini Brillouin zones that correspond to emergent superlattices. By computing the damping rate we show that the vanishing of the velocity and generation of finite density of states at the magic-angle transition coincides with the development of an imaginary part in the self energy and a suppression of the quasiparticle residue that vanishes in a power law like fashion. Observing these effects with ultracold atoms using momentum resolved radiofrequency spectroscopy is discussed.