论文标题

从STM数据的魔法角度双层石墨烯的STM数据中无监督的学习两个成分的nematicities

Unsupervised learning of two-component nematicity from STM data on magic angle bilayer graphene

论文作者

Taranto, William, Lederer, Samuel, Choi, Youngjoon, Izmailov, Pavel, Wilson, Andrew Gordon, Nadj-Perge, Stevan, Kim, Eun-Ah

论文摘要

诸如魔术角扭曲双层石墨烯(MATBG)之类的Moiré材料表现出显着的现象学,但针对某些实验方法,尤其是扫描探针,例如扫描隧道显微镜(STM),面临着重大挑战。典型的STM研究可以成像成千上万的原子单位细胞可以对大约十个Moiré细胞进行成像,从而使数据分析在统计学上很刺耳。在这里,我们提出了一种通过从几个偏置电压中汇总的STM电导数据来减轻此问题的方法,然后使用Gaussian混合物模型聚类的无监督的机器学习方法来从所得数据集中汲取最大见解。我们将此方法应用于符合点组对称性的输入粗粒键变量,以研究MATBG中电荷中性和孔掺杂样品的MATBG中的列表有序趋势。对于电荷中立数据集,聚类揭示了多种类型的nematicition的令人惊讶的共存,这些共存与对称性无关,因此通常是非排定的。相比之下,孔掺杂数据中的聚类与单一类型的远距离顺序一致。除了其在分析MATBG中的nematicity方面的价值之外,我们的方法还具有增强对对称性破裂及其在各种Moiré材料中的空间变化的潜力。

Moiré materials such as magic angle twisted bilayer graphene (MATBG) exhibit remarkable phenomenology, but present significant challenges for certain experimental methods, particularly scanning probes such as scanning tunneling microscopy (STM). Typical STM studies that can image tens of thousands of atomic unit cells can image roughly ten moiré cells, making data analysis statistically fraught. Here, we propose a method to mitigate this problem by aggregating STM conductance data from several bias voltages, and then using the unsupervised machine learning method of gaussian mixture model clustering to draw maximal insight from the resulting dataset. We apply this method, using as input coarse-grained bond variables respecting the point group symmetry, to investigate nematic ordering tendencies in MATBG for both charge neutral and hole-doped samples. For the charge-neutral dataset, the clustering reveals the surprising coexistence of multiple types of nematicity that are unrelated by symmetry, and therefore generically nondegenerate. By contrast, the clustering in the hole doped data is consistent with long range order of a single type. Beyond its value in analyzing nematicity in MATBG, our method has the potential to enhance understanding of symmetry breaking and its spatial variation in a variety of moiré materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源