论文标题

超薄磁化的埃氏元素 - 零半导体中的非肾脏热辐射

Nonreciprocal thermal radiation in ultrathin magnetized epsilon-near-zero semiconductors

论文作者

Liu, Mengqi, Xia, Shuang, Wan, Wenjian, Qin, Jun, Li, Hua, Zhao, Changying, Bi, Lei, Qiu, Cheng-Wei

论文摘要

光谱/角发射率$ e $和一个物体的吸收率$α$被基尔乔夫(Kirchhoff)在相互系统中的热辐射定律相同,但这引入了能源转换和收获设备的内在和不可避免的能源损失。到目前为止,仍缺乏破坏这种众所周知的平衡的实验证据,并且以前的理论建议仅限于狭窄的单波段非偏射辐射。据我们所知,在这里,我们首次观察到使用Ultrathin($ <λ/40 $,$λ$是工作波长)违反了Kirchhoff定律,在Epsilon-Near-Zero(Enz)频率上磁化了INAS INAS半导体膜。 $ |α-e |> 0.6 $的巨大差异已在适度的外部磁场下进行了实验证明。此外,基于磁化的ENZ构建块,支持非对称辐射的贝尔曼和表面ENZ模式,我们显示了非偏置热辐射的多功能形状:不同波段在不同波段的单波段,双波段和宽带非互动发射光谱。我们关于打破基尔乔夫定律的发现将提高对天然物体的排放和吸收过程的常规理解,并为设计各种非偏置热发射器设计而更全面的研究奠定了坚实的基础。据报道的多样化非肾脏发射的食谱还将在太阳能电池,嗜热伏伏雄性,辐射冷却等区域中翻新下一代非年代型能设备方面繁殖新的可能性。

Spectral/angular emissivity $e$ and absorptivity $α$ of an object are widely believed to be identical by Kirchhoff's law of thermal radiation in reciprocal systems, but this introduces an intrinsic and inevitable energy loss for energy conversion and harvesting devices. So far, experimental evidences of breaking this well-known balance are still absent, and previous theoretical proposals are restricted to narrow single-band nonreciprocal radiation. Here we observe for the first time, to our knowledge, the violation of Kirchhoff's law using ultrathin ($<λ/40$, $λ$ is the working wavelength) magnetized InAs semiconductor films at epsilon-near-zero (ENZ) frequencies. Large difference of $|α-e|>0.6$ has been experimentally demonstrated under a moderate external magnetic field. Moreover, based on magnetized ENZ building blocks supporting asymmetrically radiative Berreman and surface ENZ modes, we show versatile shaping of nonreciprocal thermal radiation: single-band, dual-band, and broadband nonreciprocal emission spectra at different wavebands. Our findings of breaking Kirchhoff's law will advance the conventional understanding of emission and absorption processes of natural objects, and lay a solid foundation for more comprehensive studies in designing various nonreciprocal thermal emitters. The reported recipe of diversely shaping nonreciprocal emission will also breed new possibilities in renovating next-generation nonreciprocal energy devices in the areas of solar cells, thermophotovoltaic, radiative cooling, etc.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源