论文标题
选择模型选择的交叉验证:带有生态示例的底漆
Cross validation for model selection: a primer with examples from ecology
论文作者
论文摘要
信息标准(IC)和交叉验证(CV)技术为生态推理的模型选择原理的日益增长的使用。尽管IC技术(例如Akaike的信息标准)在历史上在生态学上一直很受欢迎,但CV是一种多功能且越来越多地使用的替代方案。 CV使用数据拆分来估计基于(样本外的)预测性能的模型得分,即使无法确切地推导可能性(例如机器学习)或计数参数(例如,混合效应模型和惩罚性回归),也可以使用。在这里,我们为理解和应用CV在生态学中提供了入门。我们回顾了简历的常用变体,包括近似方法,并根据统计上下文提出建议。我们解释了简历的一些重要(但经常被忽视)的技术方面,例如偏见校正,估计不确定性,得分选择和简约的选择规则。我们还解决了关于使用简历的障碍的误解(和真相),包括计算成本和易于实施,并阐明了简历和信息理论方法之间的关系。本文包括两个生态案例研究,以说明技术的应用。我们得出的结论是,基于简历的模型选择应广泛应用于生态分析,因为其稳健的估计属性和适用的各种情况。特别是,如果k <10,使用偏置校正,我们建议使用剩下的(loo)或近似loo cv最小化偏差或其他k折CV。为了减轻过度拟合,我们建议通过修改后的单标准规则进行校准选择,该规则是过度拟合的主要原因:得分估算不确定性。
The growing use of model-selection principles in ecology for statistical inference is underpinned by information criteria (IC) and cross-validation (CV) techniques. Although IC techniques, such as Akaike's Information Criterion, have been historically more popular in ecology, CV is a versatile and increasingly used alternative. CV uses data splitting to estimate model scores based on (out-of-sample) predictive performance, which can be used even when it is not possible to derive a likelihood (e.g., machine learning) or count parameters precisely (e.g., mixed-effects models and penalised regression). Here we provide a primer to understanding and applying CV in ecology. We review commonly applied variants of CV, including approximate methods, and make recommendations for their use based on the statistical context. We explain some important -- but often overlooked -- technical aspects of CV, such as bias correction, estimation uncertainty, score selection, and parsimonious selection rules. We also address misconceptions (and truths) about impediments to the use of CV, including computational cost and ease of implementation, and clarify the relationship between CV and information-theoretic approaches to model selection. The paper includes two ecological case studies which illustrate the application of the techniques. We conclude that CV-based model selection should be widely applied to ecological analyses, because of its robust estimation properties and the broad range of situations for which it is applicable. In particular, we recommend using leave-one-out (LOO) or approximate LOO CV to minimise bias, or otherwise K-fold CV using bias correction if K<10. To mitigate overfitting, we recommend calibrated selection via the modified one-standard-error rule which accounts for the predominant cause of overfitting: score-estimation uncertainty.