论文标题
MLNAV:学习在火星地形上安全导航
MLNav: Learning to Safely Navigate on Martian Terrains
论文作者
论文摘要
我们提出了MLNAV,这是一个学习在复杂环境中运行的安全至关重要和资源有限系统的学习增强的路径规划框架,例如在火星上航行的流浪者。 MLNAV明智地使用机器学习,以提高路径计划的效率,同时完全尊重安全限制。特别是,此类安全至关重要的设置中的主要计算成本正在基于模型的安全检查器在拟议的路径上运行。我们学到的搜索启发式可以同时预测单个运行中所有路径选项的可行性,并且基于模型的安全检查器仅在顶级得分路径上调用。我们使用毅力漫游者收集的真正的火星地形数据以及一系列具有挑战性的合成领域来验证高保真模拟。我们的实验表明:(i)与船上的基线ENAV路径规划师相比,MLNAV可以为多个关键指标提供显着改善,例如在驾驶真正的火星地形时,碰撞检查降低了10倍,尽管接受了合成领域的培训; (ii)MLNAV可以成功地在高度挑战性的地形中导航,而基线ENAV在预时之前未能找到可行的道路。
We present MLNav, a learning-enhanced path planning framework for safety-critical and resource-limited systems operating in complex environments, such as rovers navigating on Mars. MLNav makes judicious use of machine learning to enhance the efficiency of path planning while fully respecting safety constraints. In particular, the dominant computational cost in such safety-critical settings is running a model-based safety checker on the proposed paths. Our learned search heuristic can simultaneously predict the feasibility for all path options in a single run, and the model-based safety checker is only invoked on the top-scoring paths. We validate in high-fidelity simulations using both real Martian terrain data collected by the Perseverance rover, as well as a suite of challenging synthetic terrains. Our experiments show that: (i) compared to the baseline ENav path planner on board the Perserverance rover, MLNav can provide a significant improvement in multiple key metrics, such as a 10x reduction in collision checks when navigating real Martian terrains, despite being trained with synthetic terrains; and (ii) MLNav can successfully navigate highly challenging terrains where the baseline ENav fails to find a feasible path before timing out.