论文标题

一个特殊案例的序列扭曲产品歧管,具有半河畔爱因斯坦的指标

A family of special case of sequential warped product manifolds with semi-Riemannian Einstein metrics

论文作者

Pigazzini, Alexander, Ozel, Cenap, Jafari, Saeid, Pincak, Richard, DeBenedictis, Andrew

论文摘要

我们得出了一般公式,用于对序列扭曲产物半侵蚀歧管的特殊配置为爱因斯坦,其中基本manifold是两个配备共形度量的两个歧管的产物。随后,我们研究了这两个流形分别与$ n_1 $ dimensional和$ n_2 $二维伪euclidean Space的案例。对于后一种情况,我们证明了在$(n_1-1)$ - 维度转换组的作用下存在的解决方案家族的存在,以实现正常RICCI曲率($λ> 0 $)的情况。

We derive the general formulas for a special configuration of the sequential warped product semi-Riemannian manifold to be Einstein, where the base-manifold is the product of two manifolds both equipped with a conformal metrics. Subsequently we study the case in which these two manifolds are conformal to a $n_1$-dimensional and $n_2$-dimensional pseudo-Euclidean space, respectively. For the latter case, we prove the existence of a family of solutions that are invariant under the action of a $(n_1-1)$-dimensional group of transformations to the case of positive constant Ricci curvature ($λ>0$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源