论文标题
Janus MXY/石墨烯异质结构中的永久性和诱导的静电偶极矩对肖特基屏障的作用:第一原理研究
The Role of Permanent and Induced Electrostatic Dipole Moments for Schottky Barriers in Janus MXY/Graphene Heterostructures: a First Principles Study
论文作者
论文摘要
Schottky屏障高度($ e_ {sbh} $)是确定半导体材料的传输特性的关键因素,因为它直接调节光电设备中的载流子迁移率。原则上,范德华(VDW)Janus异质结构为控制ESBH提供了吸引人的途径。但是,潜在的原子机制远非最终理解,这促使对该主题进行进一步研究。为此,在这里,我们对电子特性进行了广泛的第一原理研究,以及几个VDW Janus MXY/Chapeene(M = Mo,W; X,X,Y = S,SE,TE)异源结构的$ E_ {SBH} $。模拟的结果表明,通过更改异质结构界面的组成和几何形状,可以控制其电气接触,从而以$ e_ {sbh} $中的近一个数量级变化的订单变化,从欧姆到肖特基,从欧姆到肖特基。对模拟的详细分析可以根据MXY/GR界面处的界面电荷重新分布,可以根据Janus MXY板的永久性偶极矩与引起的诱导材料之间的相互作用进行合理化。这种相互作用被证明在改变VDW Janus异质结构的静电势差方面非常有效,从而确定其ESBH,因此是Schottky(Ohmic)接触类型。这些计算发现为控制Janus异质结构中的电气接触的指南促进了纳米级设备中电触点的合理设计。
The Schottky barrier height ($E_{SBH}$) is a crucial factor in determining the transport properties of semiconductor materials as it directly regulates the carrier mobility in opto-electronics devices. In principle, van der Waals (vdW) Janus heterostructures offer an appealing avenue to controlling the ESBH. However, the underlying atomistic mechanisms are far from understood conclusively, which prompts for further research in the topic. To this end, here, we carry out an extensive first principles study of the electronic properties and $E_{SBH}$ of several vdW Janus MXY/Graphene (M=Mo, W; X, Y=S, Se, Te) heterostructures. The results of the simulations show that by changing the composition and geometry of the heterostructure's interface, it is possible to control its electrical contact, thence electron transport properties, from Ohmic to Schottky with nearly one order of magnitude variations in the $E_{SBH}$. Detailed analysis of the simulations enables rationalization of this highly attractive property on the basis of the interplay between the permanent dipole moment of the Janus MXY sheet and the induced one due to interfacial charge redistribution at the MXY/Gr interface. Such an interplay is shown to be highly effective in altering the electrostatic potential difference across the vdW Janus heterostructure, determining its ESBH, thence Schottky (Ohmic) contact type. These computational findings contribute guidelines to control electrical contacts in Janus heterostructures towards rational design of electrical contacts in nanoscale devices.