论文标题
关于M17恒星形成区域中近距离二进制的起源
On the origin of close massive binaries in the M17 star-forming region
论文作者
论文摘要
在年轻的簇和OB关联中,O恒星的光谱多样性调查表明,这些巨大的恒星中有很大一部分($ \ sim $ 70%)(M $ _ {i} $ \ gt $ 15 $ 15 $ M _ {\ odot} $)属于关闭和近乎的Per-Period binaries(物理分离$ a)尽管最近和重大进展,但导致如此紧密的多个系统的形成机制仍有待阐明。结果,年轻的大型近距离二进制文件(或高阶多系统)是独特的实验室,可以找出高质量恒星的配对机理。我们介绍了M17恒星形成区域($ \ Lessim $ 1 Myr)和另外两个前景星的第一个VLTI/重力观察结果。从可见性振幅和封闭阶段的干涉模型拟合中,我们搜索伴侣并测量其位置和助焊剂比率。将所得的幅度差异与大气模型和进化轨道相结合,我们进一步限制了各个组件的质量。所有六个高质量恒星都在多个系统中,导致100%的多重分数(MF),产生68%的置信区间为94-100%。我们检测到9个伴侣的总数,分离最多为120 au。包括先前确定的光谱伴侣,样本中的年轻O星的同伴部分达到2.3 $ \ pm $ 0.6。派生的质量的范围从2.5到50 $ m _ {\ odot} $,倾向于高质量同伴。虽然基于适度的样本,但我们的结果清楚地表明,高度多样性的起源植根于其恒星形成机制。没有明确的证据表明可以找到大规模恒星形成的竞争概念之一(核心积聚或竞争积聚)。但是,我们的结果与迁移兼容,作为形成近距离二进制的方案。
Spectroscopic multiplicity surveys of O stars in young clusters and OB associations have revealed that a large portion ($\sim$ 70%) of these massive stars (M$_{i}$ $\gt$ 15 $M_{\odot}$) belong to close and short-period binaries (physical separation d $\lt$few au). Despite the recent and significant progress, the formation mechanisms leading to such close massive multiple systems remain to be elucidated. As a result, young massive close binaries (or higher-order multiple systems) are unique laboratories to figure out the pairing mechanism of high-mass stars. We present the first VLTI/GRAVITY observations of six young O stars in the M17 star-forming region ($\lesssim$ 1 Myr) and two additional foreground stars. From the interferometric model fitting of visibility amplitudes and closure phases, we search for companions and measure their positions and flux ratios. Combining the resulting magnitude difference with atmosphere models and evolutionary tracks, we further constrain the masses of the individual components. All of the six high-mass stars are in multiple systems, leading to a multiplicity fraction (MF) of 100%, yielding a 68% confidence interval of 94-100%. We detect a total number of 9 companions with separations up to 120 au. Including previously identified spectroscopic companions, the companion fraction of the young O stars in our sample reaches 2.3$\pm$0.6. The derived masses span a wide range from 2.5 to 50 $M_{\odot}$, with a great tendency towards high-mass companions. While based on a modest sample, our results clearly indicate that the origin of the high degree of multiplicity is rooted in their star formation mechanism. No clear evidence for one of the competing concepts of massive star formation (core accretion or competitive accretion) could be found. However, our results are compatible with migration as a scenario for the formation of close massive binaries.