论文标题
分类熵,(共同)T结构和St-Triples
Categorical entropy, (co-)t-structures and ST-triples
论文作者
论文摘要
在本文中,我们研究了一个精确的endofunctor $φ的动态属性:\ Mathcal {d} \ to \ Mathcal {d} $的三角形类别$ \ MATHCAL {D} $。特别是,我们对以下问题感兴趣:给定完整的三角形子类别$ \ MATHCAL {a},\ MATHCAL {B} \ subset \ Mathcal \ Mathcal \ Mathcal {d} $,使得$φ(\ Mathcal {a}) \ Mathcal {B} $,$φ| _ \ Mathcal {a} $和$φ| _ \ Mathcal {B} $的分类熵如何相关?为了回答这个问题,我们使用有限(共同)心脏的有界(共同)T结构引入了新的熵型不变性,并证明了它们的基本属性。然后,我们将这些结果应用于回答我们的问题,以解决$ \ Mathcal {a} $具有有界的T结构,而$ \ Mathcal {B} $具有有界的Co-T结构,从某种意义上来说,彼此双重。
In this paper, we study a dynamical property of an exact endofunctor $Φ: \mathcal{D} \to \mathcal{D}$ of a triangulated category $\mathcal{D}$. In particular, we are interested in the following question: Given full triangulated subcategories $\mathcal{A},\mathcal{B} \subset \mathcal{D}$ such that $Φ(\mathcal{A}) \subset \mathcal{A}$ and $Φ(\mathcal{B}) \subset \mathcal{B}$, how the categorical entropies of $Φ|_\mathcal{A}$ and $Φ|_\mathcal{B}$ are related? To answer this question, we introduce new entropy-type invariants using bounded (co-)t-structures with finite (co-)hearts and prove their basic properties. We then apply these results to answer our question for the situation where $\mathcal{A}$ has a bounded t-structure and $\mathcal{B}$ has a bounded co-t-structure which are, in some sense, dual to each other.