论文标题

限制的复合优化和增强的拉格朗日方法

Constrained composite optimization and augmented Lagrangian methods

论文作者

De Marchi, Alberto, Jia, Xiaoxi, Kanzow, Christian, Mehlitz, Patrick

论文摘要

我们研究了有限维约束的结构化优化问题,具有复合目标函数和设置会员限制。该问题类提供一种表现力而简单的语言,为各种应用程序提供了建模框架。我们研究平稳性和规律性概念,并提出灵活的增强拉格朗日计划。我们提供了算法及其渐近特性的理论表征,从而导致了完全非凸问题的收敛结果。它证明了如何通过现成的近端方法来解决内部子问题,尽管有可能在返回近似固定点的情况下采用任何求解器。最后,我们描述了提出算法的无基质实现,并通过数值测试。说明性示例表明,受约束的复合程序作为建模工具的多功能性,并在这个巨大的问题类别中揭示了困难。

We investigate finite-dimensional constrained structured optimization problems, featuring composite objective functions and set-membership constraints. Offering an expressive yet simple language, this problem class provides a modeling framework for a variety of applications. We study stationarity and regularity concepts, and propose a flexible augmented Lagrangian scheme. We provide a theoretical characterization of the algorithm and its asymptotic properties, deriving convergence results for fully nonconvex problems. It is demonstrated how the inner subproblems can be solved by off-the-shelf proximal methods, notwithstanding the possibility to adopt any solvers, insofar as they return approximate stationary points. Finally, we describe our matrix-free implementation of the proposed algorithm and test it numerically. Illustrative examples show the versatility of constrained composite programs as a modeling tool and expose difficulties arising in this vast problem class.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源