论文标题
在协变量和概念转移下的对象检测的域概括
Domain Generalisation for Object Detection under Covariate and Concept Shift
论文作者
论文摘要
域的概括旨在促进域不变特征的学习,同时抑制特定于域特异性特征,从而使模型可以更好地推广到以前看不见的目标域。提出了一种用于对象检测的域概括方法,这是一种适用于任何对象检测体系结构的第一种此类方法。基于严格的数学分析,我们基于特征比对扩展方法,除了将跨域的边际特征分布对齐图像级别外,还可以在实例级别执行有条件对齐的新组件。这使我们能够充分解决域移位的两个组件,即协变量和概念转移,并学习域不可知的特征表示。我们在一个新提出的基准测试标准上,通过一阶段(FCO,YOLO)和两阶段(FRCNN)探测器进行广泛的评估,该基准包括几个不同的数据集,用于自主驾驶应用程序(CityScapes,BDD10K,ACDC,IDD,以及用于普遍的基础化和gwhd DataSet的效果,并显示了gwhd DataSet的效果,并显示了gwhd DataSet的整体效果,并显示 最先进的。
Domain generalisation aims to promote the learning of domain-invariant features while suppressing domain-specific features, so that a model can generalise better to previously unseen target domains. An approach to domain generalisation for object detection is proposed, the first such approach applicable to any object detection architecture. Based on a rigorous mathematical analysis, we extend approaches based on feature alignment with a novel component for performing class conditional alignment at the instance level, in addition to aligning the marginal feature distributions across domains at the image level. This allows us to fully address both components of domain shift, i.e. covariate and concept shift, and learn a domain agnostic feature representation. We perform extensive evaluation with both one-stage (FCOS, YOLO) and two-stage (FRCNN) detectors, on a newly proposed benchmark comprising several different datasets for autonomous driving applications (Cityscapes, BDD10K, ACDC, IDD) as well as the GWHD dataset for precision agriculture, and show consistent improvements to the generalisation and localisation performance over baselines and state-of-the-art.