论文标题

伪量级空间上Navier-Stokes-Korteweg模型的分析规律性

Analytic regularity for Navier-Stokes-Korteweg model on pseudo-measure spaces

论文作者

Soler, Adrien Tendani

论文摘要

这项工作的目的是研究具有伪量化空间中量子压力的可压缩Navier-Stokes系统的存在和分析平滑效果。 B. haspot考虑了该系统,F。Charve,R。Danchin和J. Xu考虑了Korteweg类型系统的分析平滑效果,它们都在BESOV空间中。在这里,我们给出了零接近分析性半径的更好的下限。这项工作是通过引入新的功能设置来处理非线性术语的新功能设置,可以加深对伪量级空间中偏微分方程的研究。伪量的空间被妥善适应以获得对解决方案的点控制,以研究湍流作为视角。

The purpose of this work is to study the existence and analytic smoothing effect for the compressible Navier- Stokes system with quantum pressure in pseudo-measure spaces. This system has been considered by B. Haspot and an analytic smoothing effect for a Korteweg type system was considered by F. Charve, R. Danchin and J. Xu, both of them in Besov spaces. Here we give a better lower bound of the radius of analyticity near zero. This work is an opportunity to deepen the study of partial differential equations in pseudo-measure spaces by introducing a new functional setting to deal with non-linear terms. The pseudo-measure spaces are well-adapted to obtain a point-wise control of solutions, with to study of turbulence as perspective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源