论文标题

在部分场景中用于对象定位的空间常识图

Spatial Commonsense Graph for Object Localisation in Partial Scenes

论文作者

Giuliari, Francesco, Skenderi, Geri, Cristani, Marco, Wang, Yiming, Del Bue, Alessio

论文摘要

我们解决了部分场景中的对象定位,这是一个新的问题,它估计了对象的未知位置(例如,袋子在哪里?)给定一个场景的部分3D扫描。所提出的解决方案基于新颖的场景图模型,即空间常识图(SCG),其中对象是节点和边缘定义它们之间的成对距离,并富含概念节点和来自常识知识基础的关系。这允许SCG更好地将其空间推断超过未知的3D场景。 SCG用于分为两个步骤来估计目标对象的未知位置:首先,我们将SCG馈入新的接近性预测网络,该图形神经网络使用注意力来执行代表目标对象的节点与代表SCG中观察到的对象的节点之间的距离预测;其次,我们提出了一个基于圆形相交的定位模块,以使用所有预测的成对距离估算对象位置,以便独立于任何参考系统。我们创建了一个新的部分重建场景的新数据集,以在部分场景中基于我们的方法定位方法,并在部分场景中实现最佳的本地化性能。

We solve object localisation in partial scenes, a new problem of estimating the unknown position of an object (e.g. where is the bag?) given a partial 3D scan of a scene. The proposed solution is based on a novel scene graph model, the Spatial Commonsense Graph (SCG), where objects are the nodes and edges define pairwise distances between them, enriched by concept nodes and relationships from a commonsense knowledge base. This allows SCG to better generalise its spatial inference over unknown 3D scenes. The SCG is used to estimate the unknown position of the target object in two steps: first, we feed the SCG into a novel Proximity Prediction Network, a graph neural network that uses attention to perform distance prediction between the node representing the target object and the nodes representing the observed objects in the SCG; second, we propose a Localisation Module based on circular intersection to estimate the object position using all the predicted pairwise distances in order to be independent of any reference system. We create a new dataset of partially reconstructed scenes to benchmark our method and baselines for object localisation in partial scenes, where our proposed method achieves the best localisation performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源