论文标题

二进制形式的小部分部分

Small fractional parts of binary forms

论文作者

Yeon, Kiseok

论文摘要

我们获得了形状$ψ(x,y)的二进制形式的分数部分的界限$α_k,α_l,\ ldots,α_0\ in \ Mathbb {r} $和$ l \ l \ leq k-2。$通过利用Vinogradov的最新进度,在Vinogradov的平均价值定理上的最新进度和早期在增量数字上的增值总和上的早期工作,我们在平稳数字上超过了这些$ $ $ $的$ k $ k $ k $ s $ s $ s $ s $ s $ s $ q \ begin {equination*} \ min _ {\ ordack {0 \ leq x,y \ leq x \\(x,y)

We obtain bounds on fractional parts of binary forms of the shape $$Ψ(x,y)=α_k x^k+α_l x^ly^{k-l}+α_{l-1}x^{l-1}y^{k-l+1}+\cdots+α_0 y^k$$ with $α_k,α_l,\ldots,α_0\in\mathbb{R}$ and $l\leq k-2.$ By exploiting recent progress on Vinogradov's mean value theorem and earlier work on exponential sums over smooth numbers, we derive estimates superior to those obtained hitherto for the best exponent $σ$, depending on $k$ and $l,$ such that \begin{equation*} \min_{\substack{0\leq x,y\leq X\\(x,y)\neq (0,0)}}\|Ψ(x,y)\|\leq X^{-σ+ε}.\end{equation*}

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源