论文标题
关于从原始黑洞旋转SGR a*的引力波的可检测性
On the detectability of gravitational waves from primordial black holes orbiting Sgr A*
论文作者
论文摘要
在这项工作中,我们表征了预期的引力波信号可通过计划的太空干涉仪Lisa和拟议的下一代太空式干涉仪$μ$ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $。假设这种物体确实形成了在银河中心观察到的S2轨道允许的整个弥散质量,那么在简化的圆形轨道和单色质量函数的简化假设下,我们从分辨率和非分辨源中评估了重力波中的预期信号。我们估计,$ \ simeq的一个小但不可忽略的机会$ 10%检测一个单个1 m $ _ {\ odot} $原始黑洞与丽莎在10年的数据流中,而由于未解决的来源所引起的背景信号基本上将避免检测任何合理的检测机会。相反,具有$ \ simeq $ 3的$ $ a ares,以$ \ simeq $ 10 $ 10 $^{ - 5} $ hz的敏感性更好,可以解决$ \ simeq $ \ simeq $ \ simeq $ 140 Simeq $ 140太阳能群众群众群孔,而在同样的时间内则可以在100级的背景下使用undistim nimed nimed $ n no no $ n no no no no no no no no no no no no no no no no no no no no no no no no no no。允许典型的PBH质量在0.01-10 m $ _ {\ odot} $范围内将LISA检测到$ \ simeq $ 40%的机会到质谱的下限。相反,对于$μ$ ares,我们发现一个“最佳点”仅1 m $ _ {\ odot} $,这确实是最大化可分离事件的质量。
In this work we characterize the expected gravitational wave signal detectable by the planned space-borne interferometer LISA and the proposed next generation space-borne interferometer $μ$Ares arising from a population of primordial black holes orbiting Sgr A*, the super-massive black hole at the Galactic center. Assuming that such objects indeed form the entire diffuse mass allowed by the observed orbit of S2 in the Galactic center, under the simplified assumption of circular orbits and monochromatic mass function, we assess the expected signal in gravitational waves, either from resolved and non-resolved sources. We estimate a small but non negligible chance of $\simeq$ 10% of detecting one single 1 M$_{\odot}$ primordial black hole with LISA in a 10-year-long data stream, while the background signal due to unresolved sources would essentially elude any reasonable chance of detection. On the contrary, $μ$Ares, with a $\simeq$ 3 orders-of-magnitude better sensitivity at $\simeq$ 10$^{-5}$ Hz, would be able to resolve $\simeq$ 140 solar mass primordial black holes in the same amount of time, while the unresolved background should be observable with an integrated signal-to-noise ratio $\gtrsim$ 100. Allowing the typical PBH mass to be in the range 0.01-10 M$_{\odot}$ would increase LISA chance of detection to $\simeq$ 40% towards the lower limit of the mass spectrum. In the case of $μ$Ares, instead, we find a "sweet spot" just about 1 M$_{\odot}$, a mass for which the number of resolvable events is indeed maximized.