论文标题

机器人操作的家庭对象的六型姿势估计:可访问的数据集和基准测试

6-DoF Pose Estimation of Household Objects for Robotic Manipulation: An Accessible Dataset and Benchmark

论文作者

Tyree, Stephen, Tremblay, Jonathan, To, Thang, Cheng, Jia, Mosier, Terry, Smith, Jeffrey, Birchfield, Stan

论文摘要

我们提出了一个新的数据集,用于对已知对象进行6多型姿势估计,重点是机器人操纵研究。我们建议一组玩具杂货对象,它们的物理实例很容易购买,并且适当尺寸用于机器人抓握和操纵。我们提供了这些对象的3D扫描纹理模型,适用于生成合成训练数据,以及在具有挑战性的,混乱的场景中的对象的RGBD图像,表现出部分遮挡,极端的照明变化,每个图像的多个实例,以及各种各样的姿势。使用半自动化的RGBD到模型纹理对应关系,图像在几毫米内的地面真相带有准确的地面姿势。我们还根据匈牙利分配算法提出了一种称为ADD-H的新姿势评估度量,该算法对物体几何形状中的对称性很强,而无需明确的枚举。我们共享所有玩具杂货对象的预训练姿势估计器,以及它们在验证和测试集上的基线性能。我们将此数据集提供给社区,以帮助将计算机视觉研究人员与机器人的需求联系起来。

We present a new dataset for 6-DoF pose estimation of known objects, with a focus on robotic manipulation research. We propose a set of toy grocery objects, whose physical instantiations are readily available for purchase and are appropriately sized for robotic grasping and manipulation. We provide 3D scanned textured models of these objects, suitable for generating synthetic training data, as well as RGBD images of the objects in challenging, cluttered scenes exhibiting partial occlusion, extreme lighting variations, multiple instances per image, and a large variety of poses. Using semi-automated RGBD-to-model texture correspondences, the images are annotated with ground truth poses accurate within a few millimeters. We also propose a new pose evaluation metric called ADD-H based on the Hungarian assignment algorithm that is robust to symmetries in object geometry without requiring their explicit enumeration. We share pre-trained pose estimators for all the toy grocery objects, along with their baseline performance on both validation and test sets. We offer this dataset to the community to help connect the efforts of computer vision researchers with the needs of roboticists.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源