论文标题

评估U-NET大脑提取多站点和纵向临床前中风成像

Evaluating U-net Brain Extraction for Multi-site and Longitudinal Preclinical Stroke Imaging

论文作者

Tarakci, Erendiz, Mandeville, Joseph, Hyder, Fahmeed, Sanganahalli, Basavaraju G., Thedens, Daniel R., Arbab, Ali, Huang, Shuning, Bibic, Adnan, Mihailovic, Jelena, Morais, Andreia, Lamb, Jessica, Nagarkatti, Karisma, Dinitz, Marcio A., Rogatko, Andre, Toga, Arthur W., Lyden, Patrick, Ayata, Cenk, Cabeen, Ryan P.

论文摘要

啮齿动物中风模型对于评估治疗和理解脑缺血的病理生理学和行为变化很重要,而磁共振成像(MRI)是测量临床前研究结果的宝贵工具。大脑提取是大多数神经影像管道中必不可少的第一步。但是,在存在严重病理学的情况下,当数据集质量变化很大时,这可能是具有挑战性的。卷积神经网络(CNN)可以提高准确性并减少操作员时间,从而促进高通量临床前研究。作为正在进行的临床前中风成像研究的一部分,我们使用U-NET CNN开发了一种深入学习的小鼠脑提取工具。尽管先前的研究已经评估了U-NET体系结构,但我们试图评估它们在数据类型之间的实际性能。我们询问性能如何受到以下数据的影响:六个成像中心,实验中风后两个时间点以及四个MRI对比度。我们在240个多模式MRI数据集上训练,验证和测试了一个典型的U-NET模型,包括定量多回声T2和明显的扩散系数(ADC)图,并使用大型临床前中风数据库进行了定性评估(n = 1,368)。我们描述了该系统的设计和开发,并报告了将数据特征与细分性能联系起来的发现。我们一致发现,U-NET体系结构在95-97%精度的概括性上概括性能的高精度和能力,仅基于较低的保真度成像硬件和大脑病理学的性能降低。这项工作可以帮助设计未来的临床前啮齿动物成像研究并提高其可扩展性和可靠性。

Rodent stroke models are important for evaluating treatments and understanding the pathophysiology and behavioral changes of brain ischemia, and magnetic resonance imaging (MRI) is a valuable tool for measuring outcome in preclinical studies. Brain extraction is an essential first step in most neuroimaging pipelines; however, it can be challenging in the presence of severe pathology and when dataset quality is highly variable. Convolutional neural networks (CNNs) can improve accuracy and reduce operator time, facilitating high throughput preclinical studies. As part of an ongoing preclinical stroke imaging study, we developed a deep-learning mouse brain extraction tool by using a U-net CNN. While previous studies have evaluated U-net architectures, we sought to evaluate their practical performance across data types. We ask how performance is affected with data across: six imaging centers, two time points after experimental stroke, and across four MRI contrasts. We trained, validated, and tested a typical U-net model on 240 multimodal MRI datasets including quantitative multi-echo T2 and apparent diffusivity coefficient (ADC) maps, and performed qualitative evaluation with a large preclinical stroke database (N=1,368). We describe the design and development of this system, and report our findings linking data characteristics to segmentation performance. We consistently found high accuracy and ability of the U-net architecture to generalize performance in a range of 95-97% accuracy, with only modest reductions in performance based on lower fidelity imaging hardware and brain pathology. This work can help inform the design of future preclinical rodent imaging studies and improve their scalability and reliability.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源