论文标题
使用辅助子空间技术的泰勒 - 霍德元素的后验估计值
A Posteriori Estimates of Taylor-Hood Element for Stokes Problem Using Auxiliary Subspace Techniques
论文作者
论文摘要
基于辅助子空间技术,在两个和三个维度中提出了针对Stokes问题的后验误差估计器。对于误差估计器,我们只需要分别解决与速度和压力自由度相对应的两个全局对角线线性系统,从而急剧降低了计算成本。还显示出误差估计器的上限和下限,直到误差估计器的振荡项,可以解决自适应方法的可靠性而没有饱和假设。进行数值模拟以证明我们算法的有效性和鲁棒性。
Based on the auxiliary subspace techniques, a hierarchical basis a posteriori error estimator is proposed for the Stokes problem in two and three dimensions. For the error estimator, we need to solve only two global diagonal linear systems corresponding to the degree of freedom of velocity and pressure respectively, which reduces the computational cost sharply. The upper and lower bounds up to an oscillation term of the error estimator are also shown to address the reliability of the adaptive method without saturation assumption. Numerical simulations are performed to demonstrate the effectiveness and robustness of our algorithm.