论文标题

部分可观测时空混沌系统的无模型预测

Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy CT Reconstruction

论文作者

Perelli, Alessandro, Garcia, Suxer Alfonso, Bousse, Alexandre, Tasu, Jean-Pierre, Efthimiadis, Nikolaos, Visvikis, Dimitris

论文摘要

客观的。双能计算机断层扫描(DECT)具有改善对比度,减少伪影以及在高级成像应用中执行材料分解的能力的潜力。增加的数量或测量结果是较高的辐射剂量,因此必须减少每个能量的投影数量或源X射线强度,但这会使断层扫描重建更加不良。 方法。我们开发了多渠道卷积分析操作员学习(MCAOL)方法,以在不同能量的情况下利用衰减图像中的常见空间特征,我们提出了一种优化方法,该方法将低能和高能量的衰减图像共同重建,并通过在跨卷动式汇总档案中获得的稀疏特征(通过卷积分析算手)(Cailtital Analle Allestor)(CAALENAL MELLEATION(CAOL)的稀疏特征(CAALITAL)(CAALITAL MELLECTOR)(CAOL)(CAALITAL MELLEATION)(CAOL)。 主要结果。进行了模拟和实际计算机断层扫描(CT)数据的广泛实验,以验证所提出的方法的有效性,我们报告说,与CAOL和具有单个和关节总差异(TV)正则化的CAOL和迭代方法相比,重建精度提高了。 意义。对稀疏视图和低剂量DECT的定性和定量结果表明,所提出的MCAOL方法的表现优于独立应用于每个能量的CAOL,以及几种现有的基于最新模型的迭代迭代重建(MBIR)技术,从而铺平了剂量减少的方式。

Objective. Dual-energy computed tomography (DECT) has the potential to improve contrast, reduce artifacts and the ability to perform material decomposition in advanced imaging applications. The increased number or measurements results with a higher radiation dose and it is therefore essential to reduce either number of projections per energy or the source X-ray intensity, but this makes tomographic reconstruction more ill-posed. Approach. We developed the multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies and we propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features obtained by pre-trained convolutional filters through the convolutional analysis operator learning (CAOL) algorithm. Main results. Extensive experiments with simulated and real computed tomography (CT) data were performed to validate the effectiveness of the proposed methods and we reported increased reconstruction accuracy compared to CAOL and iterative methods with single and joint total-variation (TV) regularization. Significance. Qualitative and quantitative results on sparse-views and low-dose DECT demonstrate that the proposed MCAOL method outperforms both CAOL applied on each energy independently and several existing state-of-the-art model-based iterative reconstruction (MBIR) techniques, thus paving the way for dose reduction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源