论文标题

量子应用的随机优化算法

Stochastic optimization algorithms for quantum applications

论文作者

Gidi, J., Candia, B., Muñoz-Moller, A. D., Rojas, A., Pereira, L., Muñoz, M., Zambrano, L., Delgado, A.

论文摘要

混合经典量子优化方法已成为有效解决当前NISQ计算机中问题的重要工具。这些方法使用在经典计算机中执行的优化算法,并以量子处理器中获得的目标函数值馈送。正确选择优化算法对于实现良好的性能至关重要。在这里,我们回顾了一阶,二阶和量子天然梯度随机优化方法的使用,这些方法是在实数领域定义的,并提出了在复数领域中定义的新的随机算法。所有方法的性能都通过其应用于变异量子本质量,量子状态的量子控制和量子状态估计来评估。通常,复杂数量优化算法的性能最佳,一阶复杂算法始终达到最佳性能,紧随其后的是复杂的量子天然算法,这不需要昂贵的超参数校准。特别是,复杂量子天然算法的标量配方可以通过低经典的计算成本实现良好的性能。

Hybrid classical quantum optimization methods have become an important tool for efficiently solving problems in the current generation of NISQ computers. These methods use an optimization algorithm executed in a classical computer, fed with values of the objective function obtained in a quantum processor. A proper choice of optimization algorithm is essential to achieve good performance. Here, we review the use of first-order, second-order, and quantum natural gradient stochastic optimization methods, which are defined in the field of real numbers, and propose new stochastic algorithms defined in the field of complex numbers. The performance of all methods is evaluated by means of their application to variational quantum eigensolver, quantum control of quantum states, and quantum state estimation. In general, complex number optimization algorithms perform best, with first-order complex algorithms consistently achieving the best performance, closely followed by complex quantum natural algorithms, which do not require expensive hyperparameters calibration. In particular, the scalar formulation of the complex quantum natural algorithm allows to achieve good performance with low classical computational cost.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源