论文标题
在加权平面随机晶格上接触过程
Contact Process on Weighted Planar Stochastic Lattice
论文作者
论文摘要
我们研究了加权平面随机(WPS)晶格中接触过程中的吸收状态相变。 WPS晶格是多重分子的。它的双网络具有幂律度分布函数,并且也嵌入了二维空间中。此外,它代表了在晶格模型中引入协调障碍的一种新颖方式。我们使用广泛的模拟研究了无序系统的临界行为。我们的结果表明,临界行为与常规晶格不同,这表明它属于不同的普遍性类别。我们评估了管理债券波动的指数,我们的结果与Harris-Barghathi-Vojta相关波动的标准一致。
We study the absorbing state phase transition in the contact process on the Weighted Planar Stochastic (WPS) Lattice. The WPS lattice is multifractal. Its dual network has a power-law degree distribution function and is also embedded in a bidimensional space. Moreover, it represents a novel way to introduce coordination disorder in lattice models. We investigated the critical behavior of the disordered system using extensive simulations. Our results show the critical behavior is distinct from that on a regular lattice, suggesting it belongs to a different universality class. We evaluate the exponent governing the bond fluctuations and our results agree with the Harris-Barghathi-Vojta criterium for relevant fluctuations.