论文标题

量子热传输超过第二阶,并带有反应坐标映射

Quantum Thermal Transport Beyond Second Order with the Reaction Coordinate Mapping

论文作者

Anto-Sztrikacs, Nicholas, Ivander, Felix, Segal, Dvira

论文摘要

标准量子主方程技术(例如Redfield或Lindblad方程)在显微镜系统 - 库库耦合参数$λ$中对二阶扰动。结果,此类工具并未捕获耗散系统的特征,超出$λ$的二阶。此外,如果研究效应中的领先顺序在$λ$中比季度更高,那么即使在弱耦合下,二阶描述也会从根本上失败。在这里,使用反应坐标(RC)量子主方程框架,我们能够调查和分类高于一阶阶的运输机制。该技术依赖于系统环境边界的重新定义,它允许将系统浴耦合的影响包括在高阶中。我们研究了两个模型中二阶以外的稳态热电流:具有非交叉系统式系统式操作员和三级梯子系统的广义自旋玻色子模型。在后一种模型中,热量进入一个过渡,并从另一种过渡中提取。至关重要的是,我们确定了两种传输途径:(i)系统的电流,其中热传导是由系统中的过渡介导的,而热电流比例为$ j_q \ proptoλ^2 $ to $λ$中的最低顺序。 (ii)在桥接量子系统促进的热浴中,热浴场直接交换能量。对于$λ$的最低顺序,此电流比例为$ j_q \ proptoλ^4 $。这些机制是使用数值和分析工具发现和检查的。我们认为,RC映射带来了已经达到映射的哈密顿量的水平,对运输特征有很多见解。

Standard quantum master equation techniques such as the Redfield or Lindblad equations are perturbative to second order in the microscopic system-reservoir coupling parameter $λ$. As a result, characteristics of dissipative systems, which are beyond second order in $λ$, are not captured by such tools. Moreover, if the leading order in the studied effect is higher-than-quadratic in $λ$, a second-order description fundamentally fails, even at weak coupling. Here, using the reaction coordinate (RC) quantum master equation framework, we are able to investigate and classify higher-than-second order transport mechanisms. This technique, which relies on the redefinition of the system-environment boundary, allows for the effects of system-bath coupling to be included to high orders. We study steady-state heat current beyond second-order in two models: The generalized spin-boson model with non-commuting system-bath operators and a three-level ladder system. In the latter model heat enters in one transition and it is extracted from a different one. Crucially, we identify two transport pathways: (i) System's current, where heat conduction is mediated by transitions in the system, with the heat current scaling as $j_q \propto λ^2$ to lowest order in $λ$. (ii) Inter-bath current, with the thermal baths directly exchanging energy between them, facilitated by the bridging quantum system. To the lowest order in $λ$, this current scales as $j_q \propto λ^4$. These mechanisms are uncovered and examined using numerical and analytical tools. We contend that the RC mapping brings, already at the level of the mapped Hamiltonian, much insights on transport characteristics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源