论文标题
满足功能领域的动态统一界原理的新家庭
New families satisfying the Dynamical Uniform Boundedness Principle over function fields
论文作者
论文摘要
我们扩展了一项技术,最初是由于第一作者和Poonen,用于证明代数动力学强大的界限原理(Subp)的案例,而不是积极特征的功能字段。原始方法适用于特征不划分程度的单次政治多项式。我们表明,许多新的1参数多项式家庭都满足了传票,包括偶数特征中所有二次多项式的家族。我们还提供了满足传票的新的非多项式,非拉特理性的合理功能的家族。
We extend a technique, originally due to the first author and Poonen, for proving cases of the Strong Uniform Boundedness Principle (SUBP) in algebraic dynamics over function fields of positive characteristic. The original method applied to unicritical polynomials for which the characteristic does not divide the degree. We show that many new 1-parameter families of polynomials satisfy the SUBP, including the family of all quadratic polynomials in even characteristic. We also give a new family of non-polynomial, non-Lattès rational functions that satisfies the SUBP.