论文标题

$ \ sim $ 100MW

Infrastructure-free, Deep Learned Urban Noise Monitoring at $\sim$100mW

论文作者

Yun, Jihoon, Srivastava, Sangeeta, Roy, Dhrubojyoti, Stohs, Nathan, Mydlarz, Charlie, Salman, Mahin, Steers, Bea, Bello, Juan Pablo, Arora, Anish

论文摘要

在过去的五年中,纽约市(SONYC)无线传感器网络(WSN)在曼哈顿和布鲁克林进行了说明,这是用于监测,分析和缓解城市噪声污染的较大人类人体网络物理控制系统的一部分。我们描述了2层Sonyc WSN从声学数据收集织物到3层原位噪声抱怨监测WSN及其当前评估的演变。添加的层由我们设计和制造的新型低功耗声音MOTE(“ Mach 2”)的远程(Lora),多跳网络组成。 MKII Mots以三种方式值得注意:首先,它们通过引入基于实时的卷积神经网络(CNN)的嵌入模型来提高Mote级的机器学习能力,该模型具有替代方案,同时还需要10 $ \ times $ $ $ $ \ tims $ $ $ \ sim $ \ sim $ \ sim $ \ sim $ 2的量级$ \ sim $ 2的幅度级别的运行时资源。其次,它们的部署方便地远离了高层基站节点,而没有假设在操作相关的站点(例如施工区)的电源或网络基础架构支持,从而产生了相对较低的成本解决方案。第三,它们的网络是频率敏捷的,与传统的洛拉网络不同:它以分布式的,自动化的方式宽容可变的外部干扰和链接在混乱的902-928MHz ISM band Urban环境中通过使用有效的新方法结合被动式被动测量和主动测量的好频率来动态选择良好的频率。

The Sounds of New York City (SONYC) wireless sensor network (WSN) has been fielded in Manhattan and Brooklyn over the past five years, as part of a larger human-in-the-loop cyber-physical control system for monitoring, analyzing, and mitigating urban noise pollution. We describe the evolution of the 2-tier SONYC WSN from an acoustic data collection fabric into a 3-tier in situ noise complaint monitoring WSN, and its current evaluation. The added tier consists of long-range (LoRa), multi-hop networks of a new low-power acoustic mote, MKII ("Mach 2"), that we have designed and fabricated. MKII motes are notable in three ways: First, they advance machine learning capability at mote-scale in this application domain by introducing a real-time Convolutional Neural Network (CNN) based embedding model that is competitive with alternatives while also requiring 10$\times$ lesser training data and $\sim$2 orders of magnitude fewer runtime resources. Second, they are conveniently deployed relatively far from higher-tier base station nodes without assuming power or network infrastructure support at operationally relevant sites (such as construction zones), yielding a relatively low-cost solution. And third, their networking is frequency agile, unlike conventional LoRa networks: it tolerates in a distributed, self-stabilizing way the variable external interference and link fading in the cluttered 902-928MHz ISM band urban environment by dynamically choosing good frequencies using an efficient new method that combines passive and active measurements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源