论文标题

通过转移学习估算SDSS多波段图像的群集质量

Estimating Cluster Masses from SDSS Multi-band Images with Transfer Learning

论文作者

Lin, Sheng-Chieh, Su, Yuanyuan, Liang, Gongbo, Zhang, Yuanyuan, Jacobs, Nathan, Zhang, Yu

论文摘要

星系簇的总质量表征了天体物理学和潜在宇宙学的许多方面。在广泛的红移和质量尺度上,获得许多星系簇的可靠质量估计至关重要。我们提出了一种使用SDSS数据版本12中的Ugriz波段图像估算群集质量的转移学习方法。目标质量源自X射线或SZ测量值,这些测量仅适用于群集的一小部分。我们设计了一个半监督的深度学习模型,该模型由两个卷积神经网络组成。在第一个网络中,对特征提取器进行了训练,以对SDSS光度波段进行分类。第二个网络将先前训练的功能作为输入来估计其总质量。这项工作中的培训和测试过程纯粹取决于实际观察数据。我们的算法平均达到了平均0.232 DEX的平均绝对误差(MAE),最佳折叠的平均绝对误差(MAE)为0.214 DEX。该性能与Redmapper的0.192 DEX相当。我们进一步应用了联合综合梯度和类激活映射方法来解释这种两步神经网络。随着训练数据集的规模的增加,我们的算法的性能可能会改善。该概念验证实验证明了深度学习的潜力,以最大程度地提高当前和未来大型集群调查的科学回报。

The total masses of galaxy clusters characterize many aspects of astrophysics and the underlying cosmology. It is crucial to obtain reliable and accurate mass estimates for numerous galaxy clusters over a wide range of redshifts and mass scales. We present a transfer-learning approach to estimate cluster masses using the ugriz-band images in the SDSS Data Release 12. The target masses are derived from X-ray or SZ measurements that are only available for a small subset of the clusters. We designed a semi-supervised deep learning model consisting of two convolutional neural networks. In the first network, a feature extractor is trained to classify the SDSS photometric bands. The second network takes the previously trained features as inputs to estimate their total masses. The training and testing processes in this work depend purely on real observational data. Our algorithm reaches a mean absolute error (MAE) of 0.232 dex on average and 0.214 dex for the best fold. The performance is comparable to that given by redMaPPer, 0.192 dex. We have further applied a joint integrated gradient and class activation mapping method to interpret such a two-step neural network. The performance of our algorithm is likely to improve as the size of training dataset increases. This proof-of-concept experiment demonstrates the potential of deep learning in maximizing the scientific return of the current and future large cluster surveys.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源