论文标题
Min-Max自由边界最小表面,属至少一个
Min-max free boundary minimal surface with genus at least one
论文作者
论文摘要
在本文中,我们使用$ g \ geq 1 $和$ m \ geq 1 $理想边界组件的表面扫描的最小表面建立了最小表面的最小理论。我们表明,该区域功能的宽度可以通过由带有节点的分支属$ g $ g $的边界最小表面组成的气泡树极限来实现,并且可能有限的许多分支最小球形和自由边界最小磁盘。
In this paper, we build up a min-max theory for minimal surfaces using sweepouts of surfaces of genus $g\geq 1$ and $m\geq 1$ ideal boundary components. We show that the width for the area functional can be achieved by a bubble tree limit consisting of branched genus $g$ free boundary minimal surfaces with nodes, and possibly finitely many branched minimal spheres and free boundary minimal disks.