论文标题
哈密顿歧管的总和
Sum of Hamiltonian manifolds
论文作者
论文摘要
对于任何紧凑的连接谎言组$ g $,我们研究了两个紧凑型哈密顿式$ g $ -mmanifolds $(x^+,ω^+,μ^+)$和$(x^ - ,ω^ - ,μ^ - ,μ^ - )$,带有一个常见的sibmanifold $ z $ z $ z $ z $ z $(x^+,ω^+,μ^ - ,μ^ - ,μ^ - ,μ^ - ,μ^ - )$。我们确定,哈密顿总和的合成性还原与减少的符号流形的符号总和相符。我们还比较了哈密顿总和的chern班级与$ x^\ pm $的chern班级。
For any compact connected Lie group $G$, we study the Hamiltonian sum of two compact Hamiltonian group $G$-manifolds $(X^+,ω^+,μ^+)$ and $(X^-,ω^-,μ^-)$ with a common codimension 2 Hamiltonian submanifold $Z$ of the opposite equivariant Euler classes of the normal bundles. We establish that the symplectic reduction of the Hamiltonian sum agrees with the symplectic sum of the reduced symplectic manifolds. We also compare the equivariant first Chern class of the Hamiltonian sum with the equivariant first Chern classes of $X^\pm$.